一种制备陶瓷纤维预制体专用刺针及其使用方法

    公开(公告)号:CN110670246B

    公开(公告)日:2022-02-01

    申请号:CN201911039515.1

    申请日:2019-10-29

    Abstract: 一种制备陶瓷纤维预制体专用刺针及其使用方法,涉及陶瓷纤维预制体领域,针刺的结构为:设有刺针主体,刺针主体上设有气流腔,气流腔上设有在刺针主体上随机分布的气体射流孔,气体射流孔的直径为0.08mm‑0.2mm,气体射流孔密度为35‑60个/cm2,气体射流孔与刺针主体的轴线夹角在10°‑75°。使用方法为:短切陶瓷纤维长纱线、制成网胎,网胎与陶瓷纤维单向布植绒复合,得的复合坯料;至少2层的复合坯料重叠后使用安装上述专用刺针的针刺机复合针刺,专用刺针的气流腔连接气源、输入压缩空气。本发明具有加工成本低廉、生产效率高,对纤维损伤小、层间不易分离,制备的陶瓷纤维预制体的力学性能优等优点。

    一种氮化钛纳米片吸波材料的制备方法

    公开(公告)号:CN113735073A

    公开(公告)日:2021-12-03

    申请号:CN202111116674.4

    申请日:2021-09-23

    Abstract: 一种氮化钛纳米片吸波材料的制备方法,它属于吸波材料技术领域。它要解决现有制备氮化钛吸波材料的方法存在过程复杂和成本高的问题。方法:一、制备氢氧化钠水溶液;二、氢氧化钠水溶液转移到反应釜中,加入氮化钛进行反应,所得产物洗涤后干燥,获得氮化钛纳米片吸波材料。本发明成功制备了氮化钛纳米片吸波材料,制备过程绿色、简单,价格低廉,适合大规模量产,所得氮化钛纳米材料具有良好吸波特性,在4.32GHz和6mm涂层厚度下,反射损耗值可达‑15.74dB,实现了1.04GHz(4~5.04GHz)的电磁波有效吸收。本发明制备的氮化钛纳米片,它作为吸波材料使用。

    一种多孔弹性导电复合薄膜及其制备方法

    公开(公告)号:CN113651994A

    公开(公告)日:2021-11-16

    申请号:CN202110909949.3

    申请日:2021-08-09

    Abstract: 本发明提供了一种多孔弹性导电复合薄膜及其制备方法,所述复合薄膜是以导电纳米材料为填料,水性高分子为基体,通过机械发泡、涂膜、干燥等工艺形成多孔弹性导电复合薄膜。使用机械发泡代替有机分相法发泡,可有效的避免使用有机溶剂,减少污染。本发明提供的方法具有方法简单、可靠、操作性强的特点,有效的避免使用有机溶剂,减少污染。本发明提供的方法可应用于众多功能纳米材料与水性高分子多孔复合材料的制备。本发明提供的方法所制备的薄膜具有多孔、导电好、能压缩回弹、压缩率大、厚度可控的特点。本发明提供的方法所制备的多孔弹性导电复合薄膜可广泛应用于电磁屏蔽、柔性传感和柔性发热等领域。

    一种受控电弧增材过程专用焊枪喷嘴装置

    公开(公告)号:CN111761177A

    公开(公告)日:2020-10-13

    申请号:CN201911048928.6

    申请日:2019-10-31

    Abstract: 本发明涉及一种受控电弧增材过程专用焊枪喷嘴装置,其特征在于,包括防护镜片和内部陶瓷喷嘴;本发明通过防护镜片与陶瓷喷嘴一体式设计,使操作者可以对增材过程进行实时观察且实现电弧形态与熔滴过渡实时控制。此外,在喷嘴顶端设计有微形小孔供额外保护气输入以实现熔融金属熔化及凝固过程的双重保护,双重保护作用下焊缝不易氧化且冷却速度更快;采用窄直径内部陶瓷喷嘴设计从而对电弧形成机械约束,外部保护气对内部保护气的压缩作用进一步拘束与压缩电弧,在双重约束作用下令电弧受到控制,从而提高增材时电弧的能量密度,双重气体保护的对流传热加速了陶瓷喷嘴的冷却。

    石墨纳米片多相碳复合物的制备方法及应用

    公开(公告)号:CN111334251A

    公开(公告)日:2020-06-26

    申请号:CN202010272133.X

    申请日:2020-04-09

    Inventor: 王春雨 钟博 张鹏

    Abstract: 本发明涉及新材料制造技术领域,具体的说是一种工艺简单、易操作、无环保压力、适于工业化实现的石墨纳米片多相碳复合物的制备方法及应用,原料选用葡萄糖、果糖、蔗糖等生物质糖类,物理剥离法制备的石墨纳米片,溶剂使用一定比例的酒精与水混合物,添加10%硝化纤维素混合于溶液中,石墨纳米片搅拌状态下浸泡于混合液中24~48小时,在湿润状态下,置于水热釜中进行水热碳化,温度140~180℃,时间4~8小时,随后获得石墨纳米片与糖碳化后的复合碳材料,这类复合碳材料表面残留大量醛基、羟基、羰基等功能化基团,在其表面可以负载镍、稀土化合物等功能性粒子,便于其在复合材料、工业催化等多种领域进行应用。

    基于原生木材的三维有序碳基多孔吸波材料的制备方法

    公开(公告)号:CN110734048A

    公开(公告)日:2020-01-31

    申请号:CN201911124547.1

    申请日:2019-11-18

    Abstract: 本发明提出一种基于原生木材的三维有序碳基多孔吸波材料的制备方法,包括S1、首先将原生木材切割成为预定尺寸的长方体,然后将木块浸泡1~2天,再用去离子水反复洗涤木块数次,最后将木块在50~70℃的条件下干燥;S2、将S1中干燥完成后的木块放入管式炉中,升温至350~450℃并保温0.5~1小时,即可得到预碳化的木炭块;S3、将预碳化后的木炭块与浓度为0.05~0.2mol/L的Fe(NO3)3混合并在50~70℃的条件下干燥;S4、将S3中干燥后得到的产物放入管式炉中并升温至预先设定好的温度保温0.5~1小时,当温度下降至室温后,即可取出烧结产物,所得产物即为三维有序碳基多孔吸波材料。通过上述方法获得的三维有序碳基多孔吸波材料可以被作为具有轻质、薄厚度、宽吸收频带和强吸收特性的优异吸波材料。

    一种医药中间体过滤材料的制备方法及装置

    公开(公告)号:CN106582116B

    公开(公告)日:2019-04-26

    申请号:CN201710021627.9

    申请日:2017-01-12

    Abstract: 一种医药中间体过滤材料的制备方法及装置,涉及医药制备技术领域,方法为:a、将硝酸铁、硫酸镍、EDTANa2、水合肼制备成质量分数10‑25%的溶液,调节PH=4‑6;b、将硅溶胶、硼酸、二甲胺混合并稀释至质量分数30‑60%,超声震荡2‑5h,调节PH=3‑7;c、将a、b制备的产物按体积比1‑8:1置入等离子喷枪喷出的等离子火焰内;d、等离子火焰将其喷在氧化铝蜂窝陶瓷或不锈钢孔板等支撑体表面进行原位反应,制备成医药中间体过滤材料。其制备装置为:等离子喷枪喷口前侧设有喂料套管,喂料套管的外管与第一蠕动泵输送软管相连、内管与第二蠕动泵输送软管相连。具有工艺简单、生产效率高,过滤孔径范围可控等优点。

    一种高导热石墨烯/钛复合材料及其制备方法

    公开(公告)号:CN106978606B

    公开(公告)日:2019-01-01

    申请号:CN201611075214.0

    申请日:2016-11-30

    Abstract: 本发明提供一种高导热石墨烯/钛复合材料的制备方法,通过电化学还原工艺在钛或钛合金基板表面制备石墨烯薄膜,形成石墨烯/钛复合材料。本发明的制备方法简单、可靠、操作性强,且不使用化学还原剂,减少了化学药品的污染,将还原和成膜过程一步完成,而且所制备的石墨烯薄膜致密、均匀、厚度可控。利用这种方法制备的石墨烯/钛复合材料的热导率显著提高,可进一步提高钛或钛合金的应用范围。

    一种金属纤维烧结毡隔离网及其制备方法

    公开(公告)号:CN103774144B

    公开(公告)日:2016-03-23

    申请号:CN201410074194.X

    申请日:2014-03-03

    Abstract: 本发明涉及一种金属纤维烧结毡隔离网及其制备方法,其以网孔尺寸为10-50目,丝径为0.1-0.5mm的不锈钢丝网为基网,基网上经热浸镀铝和微弧氧化涂覆有厚度为20-25μm的氧化铝陶瓷涂层。用于在真空烧结过程中分隔两层金属纤维毡。本发明结构合理,制备工艺简单,低成本,隔离网上原位Al2O3陶瓷涂层结合力高,使用寿命长,是一种理想的金属纤维烧结毡隔离网及其制备方法。该工艺制备效率高,适合于工业化生产。

    一种纳米孔结构硅硼碳氮多孔陶瓷制备方法

    公开(公告)号:CN103896589A

    公开(公告)日:2014-07-02

    申请号:CN201410079851.X

    申请日:2014-03-06

    Abstract: 本发明涉及一种纳米孔结构硅硼碳氮多孔陶瓷的制备方法,由三氯化硼、苯胺、二甲基硅油按比例1:1:2.5均匀混合,加热下反应制得有机先驱体。再将纳米聚丙烯腈纤维浸渍于有机先驱体中并在一定温度下保温。最后将这种混合物置于高纯氮气气氛下烧结,保温结束后随炉冷却至室温。经过高温氮化处理后,其中的聚丙烯腈纤维被刻蚀掉,形成纳米孔结构的硅硼碳氮(Si-B-C-N)多孔陶瓷。得到的硅硼碳氮(Si-B-C-N)多孔陶瓷径为150-300nm,孔隙率高达78~90%,耐高温,抗氧化,空气气氛下950oC没有明显氧化,1100oC时机械性能没有明显损失。可用于柴油尾气颗粒捕集器(DPF)载体。

Patent Agency Ranking