一种基于YOLOV5网络的桥梁表观病害检测方法

    公开(公告)号:CN116596857A

    公开(公告)日:2023-08-15

    申请号:CN202310465957.2

    申请日:2023-04-26

    Abstract: 本发明公开了一种基于YOLOV5网络的桥梁表观病害检测方法,包括以下步骤:S1、构建基于YOLOV5网络的图像识别模型,用于进行桥梁表观病害检测;所述图像识别模型包括优化后的YOLOV5网络;所述YOLOV5网络的优化包括,在骨干网络中引入小目标特征提取层,并加入优化后的ECA模块对骨干网络得到的特征层进行特征加强处理;骨干网络得到的特征层包括原始网络得到的特征层,以及引入的小目标特征提取层得到的小目标特征层;S2、对图像识别模型进行训练;S3、获取桥梁的待测图像并进行预设的预处理;S4、使用训练后的图像识别模型,根据预处理后的待测图像进行桥梁表观病害检测。本发明能够提升基于桥梁表观图像进行桥梁病害检测的准确性,帮助提高桥梁检测工作的安全性。

    面向桥梁检测领域文本的少样本关系分类装置及分类方法

    公开(公告)号:CN115391535A

    公开(公告)日:2022-11-25

    申请号:CN202211034115.3

    申请日:2022-08-26

    Abstract: 本发明涉及关系分类技术领域,具体涉及面向桥梁检测领域文本的少样本关系分类装置及分类方法,该装置包括上下文特征提取模块、实体特征提取模块和关系分类模块;上下文特征提取模块包括样本编码器和双向编码网络,样本编码器用于将桥梁检测的句子编码为向量形式,得到句子编码向量;双向编码网络用于对句子进行前向和后向的编码,将两个方向的编码结果进行拼接得到句子的上下文特征信息;实体特征提取模块用于从句子编码向量中抽取实体编码向量,并将其转化为实体特征向量。相比于当前神经网络少样本关系分类方法,本发明能够在少样本的前提下更好地对桥梁检测领域文本包含的不同关系类型进行分类。

    一种像素级统计描述学习的SAR图像分类方法

    公开(公告)号:CN112884007B

    公开(公告)日:2022-08-09

    申请号:CN202110093797.4

    申请日:2021-01-22

    Abstract: 本发明公开了一种像素级统计描述学习的SAR图像分类方法,包括:S1、将目标SAR图像输入SAR图像分类模型;S2、SAR图像分类模型中的判别子网络提取目标SAR图像的像素级统计描述特征;S3、SAR图像分类模型中的模式子网络提取目标SAR图像的结构模式描述特征;S4、SAR图像分类模型中的融合模块将像素级统计描述特征和结构模式描述特征融合得到目标SAR图像的图像描述特征;S5、SAR图像分类模型中的Softmax层基于图像描述特征生成目标SAR图像的分类结果。本发明能够解决SAR图像分析时存在的泛化能力不高和稳健性不足的问题。

    一种像素级统计描述学习的SAR图像分类方法

    公开(公告)号:CN112884007A

    公开(公告)日:2021-06-01

    申请号:CN202110093797.4

    申请日:2021-01-22

    Abstract: 本发明公开了一种像素级统计描述学习的SAR图像分类方法,包括:S1、将目标SAR图像输入SAR图像分类模型;S2、SAR图像分类模型中的判别子网络提取目标SAR图像的像素级统计描述特征;S3、SAR图像分类模型中的模式子网络提取目标SAR图像的结构模式描述特征;S4、SAR图像分类模型中的融合模块将像素级统计描述特征和结构模式描述特征融合得到目标SAR图像的图像描述特征;S5、SAR图像分类模型中的Softmax层基于图像描述特征生成目标SAR图像的分类结果。本发明能够解决SAR图像分析时存在的泛化能力不高和稳健性不足的问题。

Patent Agency Ranking