一种基于位置速度控制的遥操作机器人碰撞预警方法

    公开(公告)号:CN105911995B

    公开(公告)日:2018-06-15

    申请号:CN201610429644.1

    申请日:2016-06-16

    Applicant: 吉林大学

    Abstract: 本发明提供一种基于位置速度控制的遥操作机器人碰撞预警方法,其步骤包括:首先将主手控制器视为积分器,通过位置积分计算出对机器人位置的期望值,实现机器人任务速度与手控器位置的有效对应,然后根据手控器位置信号主动预测出未来时刻机器人的位置,当机器人与环境临近碰撞状态时生成预警力,最后将反馈力与操作者手动控制力进行融合,引导操作者控制机器人避开障碍物,完成作业过程。本发明可将人类智能决策与机器智能相结合,有效提高机器人的作业精度与效率,减轻操作者的作业负担,降低对操作者技术熟练度的依赖,避免系统延时导致对机器人控制的盲目性。

    一种基于力融合的机器人手控器共享控制方法

    公开(公告)号:CN103991077A

    公开(公告)日:2014-08-20

    申请号:CN201410056953.X

    申请日:2014-02-19

    Applicant: 吉林大学

    Abstract: 本发明提出一种基于力融合的手控器共享控制方法,其步骤包括:首先以目标对象为导向,通过操作者自身的智能决策实现人手操纵手控器控制机器人运动;同时通过立体视觉技术获取作业场景图像数据并实时重构三维环境,以目标对象为导向构建使机器人自主接近目标的虚拟引导力,以此虚拟力引导手控器控制机器人运动,并将操作者的操纵力与目标对象的虚拟引导力进行融合,通过融合力对手控器和机器人的运动进行控制,实现机器智能与人类智能共同作用下控制机器人接近目标对象,完成作业过程。本发明可实现人类智能与机器智能的有效结合,保证作业过程安全、快速的进行。

    一种海上作业直升机的牵引机器人轨迹控制实验台

    公开(公告)号:CN115457833B

    公开(公告)日:2024-04-19

    申请号:CN202211162485.5

    申请日:2022-09-15

    Applicant: 吉林大学

    Abstract: 本发明涉及一种海上作业直升机的牵引机器人轨迹控制实验台,本发明由框架、十字运动平台、直升机模型、控制箱、计算机、显示器组成,能够实现对不同型号海上作业直升机的牵引机器人轨迹控制问题进行实验。本发明结构新颖,设计巧妙,既降低了实验危险性,又能更容易方便地检验实验效果。本发明既能为海上作业直升机的牵引机器人的轨迹控制研究提供实验条件,验证控制方法的效果,又可作为大学教育中现代控制方法课程教学的实验台。

    一种基于视觉的Stewart机构位姿确定方法

    公开(公告)号:CN115187651A

    公开(公告)日:2022-10-14

    申请号:CN202210805198.5

    申请日:2022-07-08

    Applicant: 吉林大学

    Abstract: 本发明适用于机构学与机器视觉的交叉技术领域,提供了一种基于视觉的Stewart机构位姿确定方法,包括双目视觉系统的搭建、最优视场求取、双目视觉系统的标定、深度求取和实验验证等步骤。本发明中的一种基于视觉的Stewart机构位姿确定方法,以Stewart机构工作空间特性为基础,结合景深、焦距、视场角和光心距离等与摄像机特性有关的参数,建立最佳视场和ArUco标识;以张正友法结合Stewart机构工作空间特点进行双目视觉系统标定;采用最小二乘法求取对象的深度信息,通过P4P方法获得平台上表面的位置信息。以视场优化的方法解决图像处理速度与定位精度之间的矛盾,以双目视觉技术克服单目视觉技术在ArUco码深度信息精度不足的缺陷,从而获得高速高精度的视觉伺服效果。

    一种基于重力补偿的六自由度串联机器人柔顺控制方法

    公开(公告)号:CN110666799A

    公开(公告)日:2020-01-10

    申请号:CN201910975566.9

    申请日:2019-10-15

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于重力补偿的六自由度串联机器人柔顺控制方法,属于机器人运动的柔顺控制领域,所述控制方法具体步骤如下:获取机器人底座安装倾角与末端工具重力,获取力传感器的零点数据与末端工具重心在传感器坐标系下的坐标,利用机器人姿态变换矩阵,获取机器人在不同姿态下的重力补偿值,通过导纳控制方法,将力偏差作为控制系统的输入来调整机器人的末端位置。本发明提出了通过对力传感器重力补偿的方式,提高传感器对环境感知力的精度,为机器人的柔顺控制提供了精准的数据基础,采用导纳控制策略,使运动控制的误差来自机械人的位置控制精度,降低了误差,并且不需要建立精确的动力学模型,减少了计算量,鲁棒性较强。

    基于深度学习的巡检机器人仪表自动检测识别方法

    公开(公告)号:CN109948469A

    公开(公告)日:2019-06-28

    申请号:CN201910153856.5

    申请日:2019-03-01

    Applicant: 吉林大学

    Abstract: 本发明公开了基于深度学习的巡检机器人仪表自动检测识别方法,所述方法具体包括以下步骤:(1)采集仪表图像进行数据标记得到训练所需数据,并训练目标检测模型(SSD)及关键点检测模型;(2)利用步骤(1)中得到的SSD目标检测模型对待识别示数的仪表图像目标识别,得到仪表的种类及边框,并裁剪仪表区域;(3)利用步骤(1)得到的关键点检测模型对步骤(2)得到的仪表区域进行关键点识别,得到指针仪表的中心点、零点、满量程点及指针末端点;(4)结合仪表的种类,利用步骤(3)得到的点计算示数进行指针示数识别。本发明提出的指针仪表示数识别方法,其能同时识别不同类型的指针仪表,且无需考虑仪表姿态和尺度等问题,极大提高了指针仪表示数识别的精度。

    一种具有触觉引导的直升机操纵负荷模拟装置

    公开(公告)号:CN106652650B

    公开(公告)日:2018-05-15

    申请号:CN201710086713.8

    申请日:2017-02-17

    Applicant: 吉林大学

    Abstract: 本发明涉及一种具有触觉引导的直升机模拟操纵负荷模拟装置,其特征在于:台面板底座由台面板底座下底板和台面板底座台面板组成,台面板底座下底板顶面固定连接台面板底座台面板,固定底座固定连接在台面板底座台面板的顶面,横向运动伺服电机通过固定底座与台面板底座台面板固定连接,横向运动伺服电机前端有横向运动盘式减速器,横向运动盘式减速器的外耳与固定底座连接,旋转支架呈直角结构,旋转支架的底面与横向运动盘式减速器的法兰面固定连接,其可根据直升机动力学模型和操纵杆模型实时、精确地提供触觉引导力,模拟高逼真的临场力感。同时,针对不同的直升机机型,可采用编程的方式来模拟各机型在力感上的细微差别,具有较好的适应性和通用性。

    一种行走机械非行驶功率测量系统

    公开(公告)号:CN102564666A

    公开(公告)日:2012-07-11

    申请号:CN201210044632.9

    申请日:2012-02-26

    Applicant: 吉林大学

    Abstract: 本发明涉及一种行走机械非行驶功率测量系统。主要由结构相同的m组液压泵/马达功率测量传感器组和n组电动机/发电机功率测量传感器组构成,m组包括分别用于检测液压泵/马达压力、转速、转角的压力传感器、转速传感器、转角传感器以及m组加减开关;n组包括分别用于检测电动机/发电机电压、电流的电压传感器、电流传感器以及n组加减开关;m组和n组传感器组的检测信号通过线束输入测量单元,经测量单元接收到各传感器的信号后,根据m组加减开关或n组加减开关的状态、内部储存的算法进行功率计算,并将结果通过线束送显示装置进行显示。本发明采用普通传感器,具有适用性强、广泛,测量简便,不对原行走机械进行大的结构改动等优点。

    三自由度运动模拟平台
    30.
    发明授权

    公开(公告)号:CN101339701B

    公开(公告)日:2011-06-08

    申请号:CN200810051086.5

    申请日:2008-08-18

    Applicant: 吉林大学

    Abstract: 本发明公开了一种三自由度运动模拟平台。提出一种重心低、承载能力强、更多地考虑乘员安全性,并大幅度降低运动模拟系统整体高度的三自由度运动模拟平台,以更好地满足车辆、船舶、飞行器、虚拟现实、娱乐业等领域的运动模拟需求。该平台主要由框架、连接框架的作动器和伺服控制系统组成,所说的框架包括下框架(1)、中框架(2)、上框架(3),下框架(1)、中框架(2)的中心位置通过一个万向节(4)连接,下框架(1)和中框架(2)之间通过两个作动器(6、5)连接,中框架(2)和上框架(3)之间通过中间作动器(9)和两个直线导轨(8、7)连接,三个作动器由伺服控制系统控制伸缩。

Patent Agency Ranking