-
公开(公告)号:CN114318935B
公开(公告)日:2023-04-25
申请号:CN202111669369.8
申请日:2021-12-30
Applicant: 哈尔滨工业大学
IPC: D21H13/38 , D21H13/46 , D21H17/68 , D21H17/13 , D21H17/28 , D21H17/53 , D21H17/25 , D21H17/07 , D21H17/59 , D21H17/60 , D21H21/16 , D21H21/24 , D21H21/14 , D21J5/00
Abstract: 一种高憎水多孔纤维隔热材料及其制备方法,涉及柔性隔热材料技术领域。本发明的目的是为了解决传统柔性隔热材料因憎水性能差而导致隔热性能劣化的问题。一种高憎水多孔纤维隔热材料,按重量份数由30~50份无机纤维、20~50份憎水改性剂、40~60份硅溶胶、10~15份表面活性剂、10~20份结合剂、5~15份助剂和100~300份蒸馏水组成,无机纤维为氧化铝纤维、氧化硅纤维和莫来石纤维中的一种或多种,憎水改性剂为有机硅憎水剂、石蜡憎水剂和滑石中的一种或多种。本发明可获得一种高憎水多孔纤维隔热材料及其制备方法。
-
公开(公告)号:CN114713463A
公开(公告)日:2022-07-08
申请号:CN202210227581.7
申请日:2022-03-08
Applicant: 哈尔滨工业大学 , 上海航天控制技术研究所
Abstract: 一种柔性线束表面胶体涂覆装置及涂覆方法,它涉及柔性线束表面涂覆技术领域,本发明要解决目前外太空使用线缆胶体涂覆困难的问题。本发明连接器卡箍,设于基座上,所述卡箍用于固定线束连接器位置,通过调节卡箍滑轨可以调节装卡松紧度;通过设计不同的内径涂覆环和滑轨基座,可以实现不同位置和不同直径的线缆外侧的胶体涂覆;所述可滑动式涂覆环可以以线缆为中心轴进行滑动,可以实现胶体在线缆主干任意位置的涂覆。本发明利用基座、连接器卡箍,可滑动式涂覆环和线束压板等结构件,能简单、方便地使胶体在柔性线束表面任意位置涂敷硅橡胶并完成胶体的固化,且胶体表面无毛刺、拉尖,表面质量佳,无胶体掉落和开裂风险,涂胶状态可控。
-
公开(公告)号:CN114369269A
公开(公告)日:2022-04-19
申请号:CN202210086511.4
申请日:2022-01-25
Applicant: 哈尔滨工业大学 , 上海航天设备制造总厂有限公司
IPC: C08J5/24 , C08L61/14 , C08K5/5415
Abstract: 一种酚醛树脂浸渍碳基三维编织体的烧蚀材料及其制备方法,涉及烧蚀材料技术领域。本发明的目的是为了解决传统的烧蚀材料不能兼具优异的耐烧蚀能力和力学性能,以及烧蚀材料不能耐多次烧蚀的问题。方法:将酚醛溶胶液进行梯度升温固化,然后将固化后的酚醛溶胶置于密封装置中静置、干燥,得到酚醛气凝胶;将填充剂加入到酚醛气凝胶中,然后加入固化剂,混合均匀后,得到浆料A;将填充剂加入到酚醛气凝胶中,然后加入固化剂,混合均匀后,得到浆料B;将浆料A和浆料B均匀浸渍到纤维编织体中,然后抽真空处理,再固化,冷却至室温,最后洗涤、老化和干燥。本发明可获得一种酚醛树脂浸渍碳基三维编织体的烧蚀材料及其制备方法。
-
公开(公告)号:CN114133261A
公开(公告)日:2022-03-04
申请号:CN202111669419.2
申请日:2021-12-30
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/48 , C04B35/58 , C04B35/622
Abstract: 一种高回弹陶瓷纤维隔热材料及其制备方法,涉及隔热材料技术领域。本发明的目的是为了解决传统柔性隔热材料高温(耐1000℃及以上温度)隔热效果差以及材料压缩回弹性能差的问题。一种高回弹陶瓷纤维隔热材料,按重量份数由40~60份无机纤维、10~20份陶瓷颗粒、10~30份结合剂、10~20份助剂和200~500份蒸馏水组成,无机纤维为玻璃纤维或硅酸铝纤维,陶瓷颗粒为氧化锆或二硅化硼,结合剂为淀粉和聚乙烯醇中的一种或两种,助剂为聚硅氧烷、聚合氯化铝和酰胺中的一种或多种。本发明可获得一种高回弹陶瓷纤维隔热材料及其制备方法。
-
公开(公告)号:CN110512310B
公开(公告)日:2021-12-21
申请号:CN201910828533.1
申请日:2019-09-03
Applicant: 哈尔滨工业大学
Abstract: 一种微米级氧化铝纤维的制备方法,涉及一种氧化铝纤维的制备方法。本发明是要解决现有的粒子状氧化铝热处理后长径比较低的技术问题,通过高温烧结制备氧化铝纤维。本发明:一、制备氧化铝前驱体;二、水热;三、烧结。本发明先采用溶胶法进行氧化铝前驱体的制备,然后采用水热法进行勃姆石纳米棒制备,再将勃姆石纳米棒高温烧结进行氧化铝纤维制备的流程。其中,在制备过程中,合适的添加剂用量以及后续的热处理过程是氧化铝形成一维结构的最关键因素。本发明基于水热法制备出具有较高长径比的纳米级勃姆石棒,通过高温烧结制备出微米级氧化铝纤维,工艺简单,制品形貌可控,纯度高,前景广泛。
-
公开(公告)号:CN108585912B
公开(公告)日:2021-12-07
申请号:CN201810658613.2
申请日:2018-06-22
Applicant: 哈尔滨工业大学
IPC: C04B35/81 , C04B35/14 , C04B35/622
Abstract: 一种含氧化石墨烯的无机高发射率涂层的制备方法,它涉及一种无机高发射率涂层的制备方法。本发明是要解决现有的无机高发射率涂层发射率低的技术问题。本发明:一、球磨;二、涂层浆料的制备;三、掺入氧化石墨烯;四、烧结。本发明添加氧化石墨烯,氧化石墨烯具有高的发射率、大比表面积、好的导热性能和良好的水溶性。利用氧化石墨烯中C=C键的高辐射系数提高涂层的发射率;氧化石墨烯较大的比表面积,为涂层微纳米颗粒提供大量的附着点,石墨烯片状层状结构,可提高涂层的内界面,增加辐射波在涂层内部的反射吸收次数,实现涂层发射率的提高。
-
公开(公告)号:CN110467207B
公开(公告)日:2021-11-09
申请号:CN201910824728.9
申请日:2019-09-02
Applicant: 哈尔滨工业大学
Abstract: 一种勃姆石纳米棒气凝胶的制备方法,涉及一种气凝胶的制备方法。本发明是要解决现有的以纳米颗粒堆积形式构成的纳米多孔结构使气凝胶本身脆性大、结构稳定性差的技术问题。本发明以勃姆石纳米棒为基础材料进行勃姆石纳米棒气凝胶的制备,在制备过程中为增强气凝胶的性能采用壳聚糖作为增强材料,实现与气凝胶的复合。为了使溶胶均匀凝胶,使获得的凝胶结构更为均匀,采用氨蒸气辅助凝胶,即将溶胶与氨的乙醇溶液一同放置在密封容器中,在氨的蒸发中实现溶胶的凝胶。本发明通过纳米棒彼此间的相互搭接和缠结构成气凝胶的骨架结构,进而改变传统的以颗粒堆积形式的气凝胶构成方式。
-
公开(公告)号:CN113149018A
公开(公告)日:2021-07-23
申请号:CN202110488058.5
申请日:2021-04-30
Applicant: 哈尔滨工业大学 , 齐齐哈尔大学 , 有研工程技术研究院有限公司
IPC: C01B33/06
Abstract: 一种TaSi2粉体的提纯方法,它涉及材料领域,本发明要提供一种经济与易于实施且提纯效果佳的TaSi2粉体的提纯方法。本发明方法:取TaSi2原粉体,加入浓度为1~5mol/L的KOH溶液,在室温~90℃水浴锅中搅拌反应2~10h,然后用砂芯漏斗抽滤,超纯水洗至中性,真空干燥后,得提纯后的TaSi2粉体;其中,TaSi2原粉体和KOH溶液的质量体积比为1g:(10~50)mL。本发明从经济与易于实施的角度出发,提出如下的提纯处理工艺:经过一系列的处理达到提纯的效果。本发明应用TaSi2粉体领域。
-
公开(公告)号:CN108531141A
公开(公告)日:2018-09-14
申请号:CN201810599360.6
申请日:2018-06-11
Applicant: 哈尔滨工业大学
IPC: C09K5/06
Abstract: 一种有机物填充有序孔氧化铝模板的复合相变储能材料的制备方法,它涉及一种复合相变储能材料的制备方法。本发明是要解决现有的无机多孔材料的孔径分布呈现随机取向,在浸渍过程中,容易发生胀裂现象,吸附形成的复合相变材料均匀性较差,热导率低的技术问题。本发明:一、制备Al2O3溶胶;二、制备陶瓷浆料;三、定向冷冻;四、制备复合相变材料。本发明采用冷冻注模成型制备了一种具有定向孔结构的Al2O3模板,并采用熔融浸渍工艺完成了相变材料的浸渍。实验结果证明,本发明制备的Al2O3模板具有很好的封装性能,制备的复合相变材料具有较高的储能密度。
-
公开(公告)号:CN106442612A
公开(公告)日:2017-02-22
申请号:CN201610805444.1
申请日:2016-09-06
Applicant: 哈尔滨工业大学
IPC: G01N25/20
CPC classification number: G01N25/20
Abstract: 真空高温热防护产品绝热性能测试方法,它涉及一种检测方法。本发明为了解决现有测试热防护产品绝热性能过程中温升时间存在较大散差,排除测量设备和测量工艺干扰导致测试结果不准确的技术问题。方法如下:将热防护层包覆被防护产品后,在真空度为7×10-3Pa,在防护层的外侧设置第一温度测点T1,在防护层的内侧设置第二温度测点T2,通过加热使第一温度测点T1温度至少达到500℃,然后在加热一段时间后,达到热流稳定状态,防护层的内侧第二温度测点T2温升速率呈线性关系时,通过公式计算热防护层的导热系数与被防护产品温度变化率成线性关系,气瓶温度变化率数值越大热防护层绝热性能越差。本发明给出了气瓶热防护层产品隔热性能的量化评价方法。
-
-
-
-
-
-
-
-
-