-
公开(公告)号:CN117040767B
公开(公告)日:2024-01-23
申请号:CN202311303994.X
申请日:2023-10-10
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 北京邮电大学
Abstract: 本申请提供一种基于PUF的细粒度多端身份认证方法以及相关设备。在申请中,网关节点不再向用户发行智能卡,从而避免基于智能卡或者移动设备的离线口令猜测攻击,智能卡丢失攻击的问题。同时,模运算的周期性直接导致攻击者无法有效猜测出用户的口令,保护口令安全。网关节点利用SM4加密算法加密了用户细粒度认证的相关参数,保障用户只能在自己的权限范围内与特定通信实体进行认证,运用物理不可克隆函数(Physically Unclonable function,简称PUF)保护用户的口令安全。进一步地,在用户端向网关节点进行验证,设计了访问时间阈值及控制条件,以限制用户端验证过程的时效,确保在有效授权时间内,进行多端身份认证,有效保障
-
公开(公告)号:CN116738443B
公开(公告)日:2023-12-26
申请号:CN202311003502.5
申请日:2023-08-10
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06F18/214
Abstract: 本发明公开了一种基于多示例感知的软件漏洞检测方法及相关设备,所述方法包括:获取包级代码片段,使用预训练模型对所述包级代码片段进行训练,得到表征向量;将表征向量分别映射到不同的线性空间中,得到包级代码片段的注意力表征向量;将第一标志向量与表征向量结合,得到包级代码片段中的每个函数代码片段的第二表征向量,将每个函数代码片段的第二表征向量拼接,再进行卷积和拆分操作,得到函数级第二标志向量和目标表征向量,并通过最大池化层计算得到文件级标志向量,根据函数级第二标志向量和文件级标志向量检测漏洞。本发明捕捉示例本身的局部信息和不同示例之间的全局信息,同时检测判断文件级代码和函数级代码是否包含漏洞。
-
公开(公告)号:CN117040767A
公开(公告)日:2023-11-10
申请号:CN202311303994.X
申请日:2023-10-10
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 北京邮电大学
Abstract: 本申请提供一种基于PUF的细粒度多端身份认证方法以及相关设备。在申请中,网关节点不再向用户发行智能卡,从而避免基于智能卡或者移动设备的离线口令猜测攻击,智能卡丢失攻击的问题。同时,模运算的周期性直接导致攻击者无法有效猜测出用户的口令,保护口令安全。网关节点利用SM4加密算法加密了用户细粒度认证的相关参数,保障用户只能在自己的权限范围内与特定通信实体进行认证,运用物理不可克隆函数(Physically Unclonable function,简称PUF)保护用户的口令安全。进一步地,在用户端向网关节点进行验证,设计了访问时间阈值及控制条件,以限制用户端验证过程的时效,确保在有效授权时间内,进行多端身份认证,有效保障了验证阶段的效率和安全性。
-
公开(公告)号:CN116738443A
公开(公告)日:2023-09-12
申请号:CN202311003502.5
申请日:2023-08-10
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06F18/214
Abstract: 本发明公开了一种基于多示例感知的软件漏洞检测方法及相关设备,所述方法包括:获取包级代码片段,使用预训练模型对所述包级代码片段进行训练,得到表征向量;将表征向量分别映射到不同的线性空间中,得到包级代码片段的注意力表征向量;将第一标志向量与表征向量结合,得到包级代码片段中的每个函数代码片段的第二表征向量,将每个函数代码片段的第二表征向量拼接,再进行卷积和拆分操作,得到函数级第二标志向量和目标表征向量,并通过最大池化层计算得到文件级标志向量,根据函数级第二标志向量和文件级标志向量检测漏洞。本发明捕捉示例本身的局部信息和不同示例之间的全局信息,同时检测判断文件级代码和函数级代码是否包含漏洞。
-
公开(公告)号:CN115473836B
公开(公告)日:2023-06-06
申请号:CN202210976811.X
申请日:2022-08-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L43/0876 , H04L43/04 , H04L47/10 , H04L47/125 , H04L47/30
Abstract: 本发明公开了一种基于流图模型的网络流量测量方法和装置。该方法包括步骤:将每次从网卡或网络流量文件接收到的数据包流插入到一个高速缓冲队列中,并从所述数据包中提取数据包信息;根据流图模型和提取的所述数据包信息构建用于更新和存储网络流特征的布谷矩阵,所述流图模型的节点、边和边上的权重向量,分别对应I P地址、I P之间的网络流和网络流的统计特征向量;通过基础查询接口对所述布谷矩阵进行查询获取网络流特征数据。本发明降低了网络流量测量的时空开销和提高了网络流量测量的效率。
-
公开(公告)号:CN116069953B
公开(公告)日:2023-06-02
申请号:CN202310200711.2
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/35 , G06F16/387 , G06F40/279 , G06F40/30 , G06N5/022
Abstract: 公开了一种基于知识图谱叠加时空属性的MDATA知识表示方法,其将所有实体划分为主要实体和次要实体,将无实际含义的次要实体不参与表示计算,降低模型的计算开销;同时将时空属性融入关系和实体属性中,实现时空属性动态知识的有效表示;最后通过多级图架构隔离子图,实现子图间独立更新互不影响,满足动态知识的快速更新,也实现根据搜索目标选定不同层次的子图进行搜索,提高搜索速度,保证模型的可计算性和可实现性。
-
公开(公告)号:CN116069953A
公开(公告)日:2023-05-05
申请号:CN202310200711.2
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/35 , G06F16/387 , G06F40/279 , G06F40/30 , G06N5/022
Abstract: 公开了一种基于知识图谱叠加时空属性的MDATA知识表示方法,其将所有实体划分为主要实体和次要实体,将无实际含义的次要实体不参与表示计算,降低模型的计算开销;同时将时空属性融入关系和实体属性中,实现时空属性动态知识的有效表示;最后通过多级图架构隔离子图,实现子图间独立更新互不影响,满足动态知识的快速更新,也实现根据搜索目标选定不同层次的子图进行搜索,提高搜索速度,保证模型的可计算性和可实现性。
-
公开(公告)号:CN115860117A
公开(公告)日:2023-03-28
申请号:CN202310149931.7
申请日:2023-02-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/02 , G06F40/30 , G06F18/241 , G06F21/57
Abstract: 公开了一种基于攻防行为的MDATA知识抽取方法及其系统,其基于深度学习的人工智能技术与自然语言处理技术,以在网络攻防演习中记录攻防行为数据,并对攻防双方的攻防数据进行联合分析,去除所有的无效攻击步骤,将所有的有效攻击步骤抽取出来作为MDATA知识以构建网络安全知识库。这样,不仅从全面而丰富的攻防行为数据中提取到攻击者攻击过程中的时空特性,还提高了知识抽取的有效性。
-
公开(公告)号:CN115631798A
公开(公告)日:2023-01-20
申请号:CN202211276710.8
申请日:2022-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B40/20 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/084 , G06F18/2415 , G06F18/25
Abstract: 本发明公开了一种基于图对比学习的生物分子分类方法及装置,通过将获取的目标生物分子图输入到预训练的编码器中,将得到的目标生物分子图中的所有节点特征进行融合,得到目标生物分子图标签;编码器的预训练过程包括:将生物分子图输入第一编码器,得到生物分子图特征,将生物分子图输入第二编码器,得到生物分子图正例特征;将构造的生物分子图负例输入到第二编码器中,得到生物分子图负例的负例特征;获取每轮负例入队训练个数,基于生物分子图特征、生物分子图正例特征、负例特征和每轮负例入队训练个数,对第一编码器和第二编码器进行更新,得到预训练的编码器。与现有技术相比,本发明的技术方案能提高生物分子分类的准确性。
-
公开(公告)号:CN114969318A
公开(公告)日:2022-08-30
申请号:CN202210069686.4
申请日:2022-01-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 东莞理工学院
IPC: G06F16/35 , G06F16/36 , G06F40/284 , G06F40/211 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于多图稀疏交互网络的多任务立场检测方法。该方法通过将输入文本输入至多图稀疏交互网络模型,得到所述输入文本的立场检测极性和情感分类极性;所述多图稀疏交互网络模型包括文本编码模块、多图构建模块、多图稀疏交互模块和任务相关注意力模块;所述多图构建模块用于构建所述多图稀疏交互网络模型的立场任务图、情感任务图和任务关系图;多图稀疏交互模块用于对立场任务图、情感任务图和任务关系图的图内节点特征进行更新,和对节点特征在图间的稀疏交互进行更新;所述任务相关注意力模块用于计算输入文本的检测立场的极性和分类情感的极性。本发明技术方案提高了针对推文文本进行立场检测的准确性。
-
-
-
-
-
-
-
-
-