-
公开(公告)号:CN119229152B
公开(公告)日:2025-03-18
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
公开(公告)号:CN118941606B
公开(公告)日:2025-01-07
申请号:CN202411415165.5
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种自动驾驶单目深度估计的道路物理域对抗补丁生成方法,形成场景图像数据集;生成目标车辆的掩码图像,目标车辆转换成像素坐标系下的像素坐标,将目标汽车嵌入场景图像中得到目标对象场景图;将道路补丁转换成像素坐标系下的像素坐标;通过场景构造模块得到多个场景图像,得到多方道路补丁视图集;计算深度损失及特征损失,构造目标损失函数;通过目标函数计算由模型输入相应补丁区域大小加权的平均梯度,使用平均梯度作为道路补丁图像的梯度,使用MI‑FGSM的方法更新当前补丁,当达到最大迭代次数时生成最终道路对抗补丁。本发明的方法使得单目深度估计技术更加精准、可靠,鲁棒性更高。
-
公开(公告)号:CN119052006A
公开(公告)日:2024-11-29
申请号:CN202411554523.0
申请日:2024-11-04
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于大语言模型提示学习的网络攻击流量检测规则生成方法、系统及介质,所述方法包括以下步骤:对原始包数据完成流量明文的重组与解码,将原始的流量会话数据转化为可阅读可理解的HTTP请求报文数据;基于大语言模型提示学习完成网络攻击流量检测规则的生成、细化与优化;完成攻击流量样本、检测规则信息与安全知识库的映射过程。相对于现有技术,本发明能更有效的生成针对攻击流量的检测规则以及获取对应的安全知识。
-
公开(公告)号:CN117955745B
公开(公告)日:2024-07-02
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN115860117B
公开(公告)日:2023-05-09
申请号:CN202310149931.7
申请日:2023-02-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/02 , G06F40/30 , G06F18/241 , G06F21/57
Abstract: 公开了一种基于攻防行为的MDATA知识抽取方法及其系统,其基于深度学习的人工智能技术与自然语言处理技术,以在网络攻防演习中记录攻防行为数据,并对攻防双方的攻防数据进行联合分析,去除所有的无效攻击步骤,将所有的有效攻击步骤抽取出来作为MDATA知识以构建网络安全知识库。这样,不仅从全面而丰富的攻防行为数据中提取到攻击者攻击过程中的时空特性,还提高了知识抽取的有效性。
-
公开(公告)号:CN119249142A
公开(公告)日:2025-01-03
申请号:CN202411129997.0
申请日:2024-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国电子科技集团公司第五十四研究所
IPC: G06F18/214 , H04L9/40 , G06F18/23213
Abstract: 本发明提供了一种基于有限审查预算的网络入侵样本高效标注方法、系统及存储介质,该网络入侵样本高效标注方法包括执行以下步骤:人工标注步骤:从新样本中选取设定数量的样本用于人工的审查、标记和统计类别数;标注分配步骤:利用已标记样本和统计类别数来聚类和标注剩余样本。本发明的有益效果是:1.本发明的网络入侵样本高效标注方法不对特征空间进行限制,可在原始特征空间执行,也可在特征表示空间执行;2.本发明的网络入侵样本高效标注方法能够在有限标注预算的前提下提高新样本的标注准确性和效率。
-
公开(公告)号:CN117955745A
公开(公告)日:2024-04-30
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN117932233A
公开(公告)日:2024-04-26
申请号:CN202410324849.8
申请日:2024-03-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F18/10 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/23
Abstract: 本发明提供了一种基于相似异常行为的用户行为模型微调方法、系统及介质,该方法包括:对每个用户的行为数据预处理及统计特征提取;按正常行为统计特征,对所有用户进行聚类;对每个正常用户使用其自身的部分行为数据训练单独的用户级行为模型,所述正常用户为未出现过异常行为的用户;以同聚类的异常用户数据对每个正常用户训练单独的用户级行为模型进行微调,所述异常用户为存在异常行为的用户;对微调后的用户级行为模型进行测试。本发明能让企业以少数异常行为数据辅助对正常用户未来可能出现的异常行为的检测,有利于企业对内部威胁进行预警。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
Abstract: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN117792803A
公开(公告)日:2024-03-29
申请号:CN202410218653.0
申请日:2024-02-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/2415 , G06F18/2433 , G06F18/214 , G06F16/35 , G06F40/284 , G06N3/0455 , G06N3/088 , G06N3/09
Abstract: 本发明提供了一种基于数据包有效载荷预训练模型的网络攻击检测方法、系统及介质,该方法包括:对数据集中的网络流量包进行切分,获得网络会话流粒度的网络数据包有效载荷序列;对数据集的正常流量和网络攻击流量进行均衡采样,使用滑动窗口对有效载荷进行切分;将有效载荷切分后获得的字节对序列经分词器处理后输入Bert模型进行预训练,在预训练Bert模型时将网络会话流类比于文档,将网络数据包有效载荷类比于句子:加载已预训练的Bert模型,结合分类器在新的数据上进行微调,采用微调后的网络攻击检测模型检测网络攻击。本发明能更好地捕获网络数据包有效载荷的信息,以便于通过网络数据包有效载荷预训练模型检测网络攻击。
-
-
-
-
-
-
-
-
-