一种高镨含量的镁镨合金及其熔盐电解制备方法

    公开(公告)号:CN102644014B

    公开(公告)日:2013-10-30

    申请号:CN201210122539.5

    申请日:2012-04-24

    Abstract: 本发明提供的是一种高镨含量的镁镨合金及其熔盐电解制备方法。在电解炉内,以LiCl-KCl-MgCl2-PrCl3为电解质体系,各电解质的质量配比为44~45%、44~45%、8~9%、1~4%,然后加热至630℃熔融,以金属钨或钼为工作电极,石墨为辅助电极,银/氯化银(1wt.%)为参比电极,电解温度630℃下,电位值控制在-1.85V附近,经180分钟的电解,在熔盐电解槽于工作电极附近沉积出含有质量分数为9.7~23.2%的镨和余量的镁的镁镨合金。本发明不用任何金属作为原料,而是全部采用金属氯化物为原料,通过控制电解质配比可以得到不同组成的高镨含量的镁镨合金,合金中镨的质量分数为9.7~23.2%。整套工艺简单,对设备和实验条件要求低,能耗和污染小。

    一种直接电解制备镁锂锌锰合金的方法

    公开(公告)号:CN102002735B

    公开(公告)日:2012-05-23

    申请号:CN201010587387.7

    申请日:2010-12-15

    Abstract: 本发明提供的是一种直接电解制备镁锂锌锰合金的方法。阴极采用耐腐蚀性的惰性电极,阳极采用石墨,Ag/AgCl为参比电极,电解质体系为LiCl+KCl的质量比1∶1,电解温度控制为670℃,采用氩气保护,投入ZnCl2,MnCl2和MgCl2至熔融,在电流密度为6.2A cm-2下进行的共电沉积,通过调节ZnCl2,MnCl2和MgCl2的配比,得到α+Mg7Zn3,α+LiMgZn+LiMg2Zn3和α+β+Mg7Zn3相的镁锂锌锰合金。本发明提供了一种热耗低,生产流程简单,合金成分均匀,能通过向从LiC1-KCl电解质中添加氯化物直接得到工业领域所需的多元多相镁锂锌锰合金的方法。

    一种共电沉积变价锰直接制备镁锂锰合金的熔盐电解方法

    公开(公告)号:CN101660178B

    公开(公告)日:2011-09-14

    申请号:CN200910072920.3

    申请日:2009-09-18

    Abstract: 本发明提供的是一种共电沉积变价锰直接制备镁锂锰合金的熔盐电解方法。阴极采用惰性电极Mo,阳极采用光谱纯石墨棒,Ag/AgCl为参比电极,电解质组成为MgCl2-LiCl-KCl-KF熔盐体系中加入Mn2O3,在600℃温度下进行熔盐电解,并通过控制原料中MgCl2的浓度、Mn2O3的量以及电解参数来制备α、α+β和β相镁锂锰合金。本发明全部采用金属化合物为原料通过熔盐电解直接制备镁锂锰合金,因此该方法使生产流程大大缩短,工艺简单,可以降低合金的生产成本。并且还可以通过控制原料中MgCl2的浓度、Mn2O3的量以及电解参数制备得到α、α+β和β相的Mg-Li-Mn合金,可以满足工业领域对三种相组成镁锂锰合金的要求。

    一种含铀废水的处理系统及方法
    29.
    发明公开

    公开(公告)号:CN119409292A

    公开(公告)日:2025-02-11

    申请号:CN202411509982.7

    申请日:2024-10-28

    Abstract: 一种含铀废水的处理系统及方法,涉及核工业废水处理领域。为解决现有技术中存在的,现有的电化学处理技术在强酸性废水处理方面仍存在一些瓶颈,比如强酸性环境中的H+对电极活性位点的强烈竞争,导致电极表面活性降低,功能化电极的制备通常工艺复杂且成本高,这严重影响了技术的工业化应用,传统电化学方法在去除铀的过程中需要较高的电压,这直接导致了高能耗问题,难以满足当前对节能环保的要求的技术问题,本发明提供的技术方案为:一种含铀废水的处理模块,包括:阳极和阴极;所述阳极为金属材料,阴极为碳基材料;为所述阳极和阴极提供恒定电压的电源。适合应用于含铀废水的处理工作中。

Patent Agency Ranking