-
公开(公告)号:CN101433967A
公开(公告)日:2009-05-20
申请号:CN200810209670.9
申请日:2008-12-12
IPC: B22F9/24
Abstract: 本发明运用水热法合成L-组氨酸包裹的金纳米粒子。使用本发明方法制备得到的金纳米粒子溶液非常稳定,可在室温下保存6个月以上。所得到的金纳米粒子的直径在5nm-50nm之间,可以应用到纳米科技和生物学领域。调节得到的金纳米粒子溶液pH最终到3时,溶液的颜色会由酒红色变化为紫红色又到紫色最终变化为蓝色,表明溶液里的纳米粒子发生了一定程度的聚合。这种颜色变化现象具有一定的潜在应用价值。
-
公开(公告)号:CN119732932A
公开(公告)日:2025-04-01
申请号:CN202411857125.6
申请日:2024-12-17
Applicant: 东北林业大学
Abstract: 本发明提出了一种新型装载喜树碱及其衍生物的纳米载药体系,以羟基磷石灰(HA)纳米颗粒和壳聚糖‑金纳米粒子为基础,通过优异的比表面积、生物相容性和光热转换能力,实现对喜树碱的高效加载和精准释放,在近红外光照射下能够有效转化热能,精确靶向肿瘤组织,提高药物生物利用度和治疗效果,为癌症精准治疗提供了一种更为高效、安全的策略,具有重要的创新意义和广阔的应用前景。
-
公开(公告)号:CN117683651A
公开(公告)日:2024-03-12
申请号:CN202410108920.9
申请日:2024-01-26
Applicant: 东北林业大学
Abstract: 本发明属于合成生物技术领域,具体公开了提供了基因工程菌及其构建方法和应用。本发明首次实现了刺梨酸在真核生物中的全合成,通过对从刺梨中筛选得到的RrCYP450‑5基因、RrCYP450‑4基因、RrCYP450‑3基因在酿酒酵母中的表达进行研究,先选用基因拟南芥AtCPR1和长春花CrAS、CrAO构建了能够产熊果酸和齐墩果酸的酵母底盘菌株DYK02;接着以菌株DYK02作为底盘,将RrCYP450‑4基因与RrCYP450‑5基因在酿酒酵母菌株DYK02中进行异源表达,最终得到一株能够产生刺梨酸的酿酒酵母菌株DYK08,经过摇瓶发酵得到刺梨酸,产量为104±2μg/L。
-
公开(公告)号:CN115746845A
公开(公告)日:2023-03-07
申请号:CN202211470176.4
申请日:2022-11-23
Applicant: 东北林业大学
Abstract: 本发明提供了一种可降解Na3HfF7:Yb,Er双模式发光纳米晶、制备方法及其应用,采用三氟乙酸和氧化镱、氧化铒的反应制备三氟乙酸镱和三氟乙酸铒;采用高温溶剂热法,并利用三氟乙酸镱、三氟乙酸铒和四氯化铪为原料,制备得到Na3HfF7:Yb,Er纳米晶。本发明采用简单易行、绿色环保的高温热解法制备双模式发光的纳米晶,制备的产品同时具有优异的红色上转换发光、近红外二区下转换发光以及生物降解性能。该纳米晶在980nm激光激发下,具有明亮的上转换和下转换近红外二区发射,可分别用于上转换光触发的疾病治疗和近红外二区荧光成像。除此之外,由于Hf的存在,亦可实现CT成像。本发明中的纳米晶还具备在水相中的降解性能,保证该纳米晶在应用于活体诊疗时的生物安全性。
-
公开(公告)号:CN114381005B
公开(公告)日:2022-11-08
申请号:CN202111515930.7
申请日:2021-12-01
Applicant: 东北林业大学
Abstract: 本发明提供了一种Fe/Mn双金属掺杂的双模式成像的MOFs、制备方法及其应用,该材料是以稀土纳米晶为核,通过外延生长的方法在包覆一层稀土纳米晶的壳,然后将稀土纳米晶表面进行修饰PVP,在其表面生长双金属掺杂的ZIF‑8,该结构的纳米晶具有明显增强的上下转换发光性能,可实现体内上转换荧光成像及近红外二区成像。经过激光照射后可以激发半导体,产生活性氧和氧气,掺杂在最外壳层的Fe2+、Mn2+在游离的状态下可与瘤内的过氧化氢发生类芬顿效应实现化学动力学治疗,同时瘤内的谷胱甘肽也会被消耗。因此,这种纳米复合材料不仅可以实现体内双模式光学成像,还对具有肿瘤细胞具有光动力、化学动力学协同治疗效果,在进行癌症的诊断和治疗方面都具有较好的应用。
-
公开(公告)号:CN113663069A
公开(公告)日:2021-11-19
申请号:CN202110960482.5
申请日:2021-08-20
Applicant: 东北林业大学
Abstract: 本发明公开了一种中空介孔聚多巴胺纳米载体、制备方法及其应用,以介孔二氧化硅作为硬模板,在盐酸多巴胺、氨水及F127的共同参与下,制备单分散且粒径较小的mSiO2@PDA纳米颗粒;以无水乙醇和丙酮作为混合溶剂,去除模板剂F127,再利用Na2CO3刻蚀去掉作为硬模板的介孔二氧化硅制备分散性良好、粒径均一的中空介孔聚多巴胺纳米载体。所述中空介孔聚多巴胺纳米载体控制中空壳层的尺寸以及孔径的大小赋予纳米药物载体以优异的生物相容性、较大的比表面积,这两大优势使得其可以作为潜在的临床抗癌药物和成像剂的理想载体,此外,由于聚多巴胺材料自身可以将近红外光子转换为热量,因此此它本身亦可以作为纳米能量“转换器”而应用于光触发治疗。
-
-
-
-
-