-
公开(公告)号:CN106001565A
公开(公告)日:2016-10-12
申请号:CN201610492279.9
申请日:2016-06-29
Applicant: 中北大学
CPC classification number: Y02P10/295 , B22F3/105 , B22F3/1055 , B22F2003/1056 , B22F2003/1059
Abstract: 本发明涉及一种选择性激光烧结SLS铺粉装置,属于选择性激光烧结技术领域,提供了一种结构简单,能够感应零件成形过程中是否发生翘曲变形,从而提醒操作者调整工艺参数,保证制品质量的选择性激光烧结SLS铺粉装置,采用的技术方案为导轨上滑动安装有滚筒架,滚筒架上安装有滚筒,滚筒架的一侧设置有滚筒驱动电机,滚筒驱动电机与滚筒相连接,滚筒架的另一侧设置有链轮,链轮通过链条与支架驱动电机相连接,滚筒架和导轨之间设置有弹性变形感应装置,弹性变形感应装置安装在滚筒架内,且与控制系统相连接;本发明广泛用于选择性激光烧结工艺。
-
公开(公告)号:CN102305258B
公开(公告)日:2014-05-28
申请号:CN201110231715.4
申请日:2011-08-16
Applicant: 中北大学
Abstract: 本发明属于卷簧制造领域,提供了一种减振器套筒卷簧的制造方法,包括以下步骤:对进口套筒卷簧的原件进行材料的检测分析,选择出研制卷簧的原材料,根据对套筒卷簧结构的分析,确定坯料的形状及尺寸,采用弯曲模具对坯料进行弯曲卷圆,对得到的簧片进行热处理,利用装配模具,将簧片装配成套筒卷簧。本发明通过采用尺寸精度高和表面质量好的簧片弯曲模具,对簧片进行弯曲处理,保证了不等厚卷簧的同心度和曲率,采用挤压装配模具完成簧片的装配,确保了各个簧片间的配装间隙的合理性,保证了卷簧装配的精度,填补了我国在柴油机行业领域的一项空白,增强了国内研究开发高性能柴油机减振器卷簧的能力,提高了减振器套筒卷簧的生产与制备水平。
-
公开(公告)号:CN103046020A
公开(公告)日:2013-04-17
申请号:CN201210565187.0
申请日:2012-12-24
Applicant: 中北大学
Abstract: 本发明钛合金表面TiSiN纳米复合涂层的制备方法,属于涂层材料制备技术领域,特别是涉及一种TiSiN纳米晶超硬涂层的制备方法;所要解决的技术问题为提供一种通过添加Si元素改善熔覆层耐磨性能的钛合金表面TiSiN纳米复合涂层的制备方法;为了解决上述技术问题,本发明采用的技术方案为:钛合金表面TiSiN纳米复合涂层的制备方法,主要包括以下步骤:第一步,将钛合金试样放入激光表面处理装置的密封箱中,第二步,将密封箱抽真空后通入氮气并保持纯氮气氛围,第三步,通入SiH4气体,在高能束激光作用下形成TiSiN纳米复合超硬涂层;按本发明所述方法制备的涂层具有硬度高、与基体的结合强度高、均匀性好等优点。
-
公开(公告)号:CN100404600C
公开(公告)日:2008-07-23
申请号:CN200610012721.X
申请日:2006-05-15
Applicant: 中北大学
IPC: C08L3/02 , C08K3/38 , C09J175/04 , B29C67/00 , B29C41/38
Abstract: 本发明涉及三维喷涂粘接快速成型技术用淀粉基材料体系,包括复合基料和与之配套的粘接剂,其中复合基料是将淀粉、粘结剂、速凝剂CMC、分散剂白碳黑、增强剂、硼砂混合均匀制成;粘接剂是将氧化剂、NaOH、水基聚氨酯胶粘剂、酚类树脂、非离子表面活性剂、醇类助溶剂溶解在去离子水中混合制成。本发明针对三维喷涂粘接快速成形技术的特点,选用成本相对低廉的原料,经过简单的工艺制备过程,得到了完全可满足使用要求的成型复合基料和与之配套的粘接剂。
-
公开(公告)号:CN119640111A
公开(公告)日:2025-03-18
申请号:CN202411907599.7
申请日:2024-12-24
Applicant: 中北大学
Abstract: 本发明提供一种各向同性韧性铝合金及其制备方法。所述铝合金化学包括如下元素重量百分比:Cu 3‑6%、Ni 0.5‑2%、Mn 0.1‑0.5%,Zr 0.3‑1.5%,Ti 0.1‑0.2%,余量为Al。所述制备方法,首先按照优化成分制备球形铝合金粉末,粉末粒径D50/(D100‑D10)满足范围30‑65%;然后通过优选激光增材制造和热处理工艺参数,获得细小、均匀的等轴晶组织和弥散分布的析出相,有利于提高合金的各向同性、并获得延伸率≥20%的高韧性铝合金。
-
公开(公告)号:CN114559053B
公开(公告)日:2023-05-26
申请号:CN202210085304.7
申请日:2022-01-25
Applicant: 中北大学
IPC: B22F10/28 , B22F9/04 , B22F1/14 , B22F1/145 , B22F1/10 , B22F10/64 , B33Y10/00 , B33Y40/20 , B33Y70/10
Abstract: 本发明公开了一种利用SLM制备B4C/17‑4PH高强钢复合材料的方法,包括以下步骤:(1)17‑4PH高强钢粉末的预处理;(2)B4C粉末的预处理;(3)将预处理得到的17‑4PH高强钢粉末以及B4C粉末混合、球磨,最终制备出B4C粉末在17‑4PH粉末中均匀分布的混合粉末;(4)然后按照提前设置好的装粉模式进行装粉;(5)装粉结束后,进行SLM成型,打印出完整的B4C增强相均匀分布于基体中的B4C/17‑4PH复合材料;(6)将SLM成型的B4C/17‑4PH复合材料进行固溶时效处理,得到经SLM成形固溶时效处理后的B4C增强相均匀分布于基体中的B4C/17‑4PH复合材料。与17‑4PH高强钢相比复合材料的抗衰减性、抗腐蚀疲劳性能等综合性能得到大幅度提高,从而解决了我国在航空航天、军工、机械设备等领域的发展要求。
-
公开(公告)号:CN116145133A
公开(公告)日:2023-05-23
申请号:CN202310107170.9
申请日:2023-02-06
Applicant: 中北大学
Abstract: 本发明属于结构修复技术领域,涉及一种镍基单晶高温合金激光外延生长的方法,通过激光熔覆镍基单晶合金熔池的数值模拟,得到熔池内的温度梯度分布,利用理论模型精确预测枝晶生长方向与速度,并通过判断是否实现枝晶外延生长来确定最优激光工艺参数,再通过激光熔覆技术,对镍基单晶高温合金进行激光熔覆,从而实现枝晶的外延定向生长,解决镍基单晶高温合金叶片外延生长修复的技术问题。
-
公开(公告)号:CN113042748B
公开(公告)日:2022-10-11
申请号:CN202110255797.X
申请日:2021-03-09
Applicant: 中北大学
IPC: B22F10/28 , B22F10/64 , B22F12/13 , C22C1/04 , C22C21/16 , C22F1/057 , B33Y10/00 , B33Y70/00 , B33Y40/10 , B33Y40/20
Abstract: 本发明提供了一种SLM制备高强度高延伸率Al‑Cu‑Mg合金的方法。所述合金成分包括如下质量分数的成分:Cu:4‑6wt%;Mg:0.1‑3wt%;Ti:0.4‑1wt%,Zr:0.8‑2wt%;Mn:0.1‑3wt%;其余为Al,且以质量比计Ti/Zr大于等于0.4小于等于0.6。所述制备方法为:按设计配比配取原料并气雾化工艺制备出适于3D打印所需粒径范围的合金粉末;然后采用3D打印,得到沉积态SLM铝铜合金零件;步骤三对所得样品进行固溶时效热处理,得到高强韧的铝铜合金零件。与现有技术相比,本发明所得成品,其相对密度可达99.85%,维氏硬度可达172Hv,抗拉强度可达487MPa,屈服强度可达366MPa,延伸率超过13%。
-
公开(公告)号:CN111250707B
公开(公告)日:2022-04-01
申请号:CN202010178160.0
申请日:2020-03-14
Applicant: 中北大学
Abstract: 本发明涉及一种基于选择性激光熔化成形技术的复合金属发泡粉体材料及其制备方法,是以各种可进行选择性激光熔化成形制备多孔金属材料的金属粉末为基体材料,加入占金属粉末质量8~35%的固体有机发泡剂和3~15%的混合无机盐发泡剂得到复合金属粉末,再将所述复合金属粉末以可挥发性有机发泡剂溶液充分浸渍,干燥得到复合金属发泡粉体材料。本发明复合金属发泡粉体材料容易在高温下产生致密而均匀的气体,以其利用选择性激光熔化成形技术可以制备出稳定性好、孔隙分布均匀的多孔金属材料。
-
公开(公告)号:CN110514492B
公开(公告)日:2022-02-08
申请号:CN201910713260.6
申请日:2019-08-02
Applicant: 中北大学
Abstract: 本发明具体涉及一种选择性激光熔化成形镍基高温合金IN718中γ″相的检测方法,所述方法包括如下步骤:对选择性激光熔化成形的镍基高温合金IN718样品进行酸化处理,酸化处理液的成分及比例为30ml HCl,10g NH2SO3H,10g SiO2,200ml H2O;酸化处理时间为10‑20s,温度为40℃;然后用清水冲洗干净,再进行研磨和抛光处理,对抛光面进行侵蚀处理,侵蚀处理液成分及比例为5g CuSO4·5H2O,20ml H2O,25ml HCl,15~20ml HNO3,5ml H2O2,将经过侵蚀处理后的样品清洗干净,用金相显微镜观察侵蚀表面;本发明提供的检测方法与传统腐蚀的组织形貌相比,可以清晰观察到晶界和γ″相的尺寸、数量及分布,并避免了Laves相对观察的干扰。
-
-
-
-
-
-
-
-
-