-
公开(公告)号:CN118880087A
公开(公告)日:2024-11-01
申请号:CN202410444515.4
申请日:2024-04-15
Applicant: 中北大学
Abstract: 本发明提供了一种激光粉末床熔融成形制备高导热高强铝合金的方法。所述合金成分包括如下质量分数的成分:Cu:0.1‑0.5wt%;Mg:0.5‑1wt%;Si:0.2‑1.5wt%;Mn:0.5‑2wt%;B:0.01‑0.05wt%;Zr:0.8‑1.2wt%;稀有元素:Ce:0.1‑0.5wt%;其余为Al。所述制备方法为:按照预期设计配比通过真空气雾化工艺制备出LPBF成形所需粒径范围的合金粉末;采用LPBF成形工艺,得到沉积态LPBF铝合金零件;经热处理得到高导热高强铝合金零件。与现有技术相比,本发明所得成品,拉伸强度可达292~294MPa、屈服强度可达279~281MPa、延伸率可达12.9~13.1%;导热系数可达159~161W/(m·K)。
-
公开(公告)号:CN116145133B
公开(公告)日:2024-08-30
申请号:CN202310107170.9
申请日:2023-02-06
Applicant: 中北大学
Abstract: 本发明属于结构修复技术领域,涉及一种镍基单晶高温合金激光外延生长的方法,通过激光熔覆镍基单晶合金熔池的数值模拟,得到熔池内的温度梯度分布,利用理论模型精确预测枝晶生长方向与速度,并通过判断是否实现枝晶外延生长来确定最优激光工艺参数,再通过激光熔覆技术,对镍基单晶高温合金进行激光熔覆,从而实现枝晶的外延定向生长,解决镍基单晶高温合金叶片外延生长修复的技术问题。
-
公开(公告)号:CN118404092A
公开(公告)日:2024-07-30
申请号:CN202410498195.0
申请日:2024-04-24
Applicant: 中北大学
IPC: B22F10/28 , C22C38/04 , C22C38/06 , C22C38/08 , C22C33/02 , B22F10/366 , B33Y10/00 , B33Y70/00 , B33Y80/00
Abstract: 本发明提供了一种利用激光粉末床熔融的制备高强低密度钢的方法。所述方法包括:按照定制化低密度钢成分配比,并制得适于3D打印所需粒径的低密度钢粉末;对激光粉末床熔融工艺参数进行优化后,由激光粉末床熔融成形设备进行3D打印,得到高致密沉积态低密度钢零件;其中采用激光粉末床熔融的工艺参数为:激光功率:110~160W;扫描速度:780~1420mm/s;扫描间距:60~110μm;铺粉厚度:30~70μm;所述低密度钢成分包括如下质量分数的成分:Mn 10~20wt%;Al 4~6wt%;Ni 5~7wt%;C 0.4~0.6wt%;其余为Fe。本发明通过3D打印得到延伸率高且强度性能较为优异的沉积态低密度钢零件。
-
公开(公告)号:CN114672805B
公开(公告)日:2024-01-30
申请号:CN202210464317.5
申请日:2022-04-29
Applicant: 中北大学
Abstract: 本发明涉及一种铌合金表面抗高温氧化涂层的制备方法,是以55wt%~60wt%的MoSi2粉、35wt%~45wt%的Al粉和5wt%~10wt%的Ce粉制备涂层熔覆用复合粉末,将涂层熔覆用复合粉末铺覆在铌合金基体材料表面,采用激光熔覆技术在铌合金基体材料表面形成熔覆涂层。本发明制备的铌合金表面抗高温氧化涂层与铌合金基体冶金结合,不仅硬度可以达到铌合金基体的近3倍,且在1200℃高温环境下的抗氧化性能也有显著提高。
-
公开(公告)号:CN114559051B
公开(公告)日:2023-05-26
申请号:CN202210084227.3
申请日:2022-01-25
Applicant: 中北大学
IPC: B22F10/28 , B22F1/14 , B22F1/145 , B22F10/64 , B22F10/366 , B22F1/10 , B22F9/04 , B33Y10/00 , B33Y40/20 , B33Y70/10
Abstract: 本发明涉及TiC/WC/17‑4PH高温耐磨钢的激光成形方法,该方法包括以下步骤:首先对粉末材料进行预处理,然后将预处理后的17‑4PH高强钢粉末、钨粉末、TiC粉末混合均匀,加入含有机硅的粘结剂;最后激光成形,获得TiC/WC/17‑4PH高温耐磨钢。该方法是一种实现高温耐磨构件激光成形的方法,用以满足零件的高温耐磨使用性能,提高使用寿命,扩大该不锈钢的应用市场,节约资源。
-
公开(公告)号:CN116130040A
公开(公告)日:2023-05-16
申请号:CN202310086450.6
申请日:2023-01-20
Applicant: 中北大学
IPC: G16C60/00 , G06F30/27 , G06N3/044 , G06N3/08 , G06F119/08
Abstract: 本发明公开了一种基于人工智能的激光定向熔覆镍基单晶方法,是按照人工智能控制镍基单晶沿着正确的外延生长方向,即镍基单晶的[001]方向生长,具体包括确定数据,搜索数据并形成训练数据集,确定阈值并根据阈值对训练数据集进行筛选,通过BP神经网络对数据进行处理得到最优激光熔覆角度,以及按照上述方式确定镍基单晶高温合金的激光熔覆轨迹,预设最优激光熔覆轨迹,按照最优激光熔覆角度对预处理后的基体材料进行激光熔覆。本发明方法摒弃了使用MATLAB计算的复杂方法,可以自主确定激光熔覆的角度以及外延生长方向,使得确定枝晶生长方向、熔覆角度和熔覆轨迹更加快速便捷,所修复镍基单晶高温合金的单晶面积更多,单晶取向更接近基体,开裂概率更低。
-
公开(公告)号:CN112191854B
公开(公告)日:2023-05-09
申请号:CN202010575189.2
申请日:2020-06-22
Applicant: 中北大学
Abstract: 本发明提供了一种3D打印用硬质合金粉末及其应用,涉及金属陶瓷复合材料技术领域,所述硬质合金粉末通过下述步骤制备:1)将原料球磨后得到料浆;2)球磨后采用喷雾干燥造粒得到混合料;3)将造粒后的混合料平铺在真空烧结炉中并进行预烧结得到粘结良好的复合粉末;4)将复合粉末破碎、过筛;此方法得到可用于3D打印的硬质合金粉末。与现有的技术相比,本发明采用预烧结的方法制备硬质合金粉末具有成本低、操作简单可控、流动性良好等优点,破碎、过筛后适用于3D打印中的激光熔化沉积等送粉成形方法。本发明将过渡金属粉末与难熔金属碳化物粉末良好的粘结在一起,且更易打印成形,成形后的制品性能良好且稳定,可用于大规模生产。
-
公开(公告)号:CN112125696B
公开(公告)日:2022-08-12
申请号:CN202011027283.0
申请日:2020-09-26
Applicant: 中北大学
IPC: C04B38/06 , C04B35/491 , C04B35/499 , C04B35/468 , C04B35/622 , C04B35/634 , C04B35/638
Abstract: 本发明涉及一种3‑3型PVDF/水泥压电复合材料,是以3‑3型多孔压电陶瓷骨架为功能体,在其孔隙中浇注水泥浆料形成基体,并在水泥基体与多孔压电陶瓷骨架结合处的孔隙及多孔压电陶瓷骨架内部的微米级孔隙内填充具有压电性的PVDF构成。本发明的3‑3型PVDF/水泥压电复合材料致密度高,可以阻止在微米级孔隙和水泥压电相结合处形成漏电流,减少空间电荷极化对材料耐电强度的影响,压电性能优良,稳定性和灵敏度高,且与混凝土结构相容性好、耐久性强。
-
公开(公告)号:CN113649598A
公开(公告)日:2021-11-16
申请号:CN202110959745.0
申请日:2021-08-20
Applicant: 中北大学
Abstract: 本发明公开了一种基于SLM成型后金属及其合金样品表面清洗处理方法,包括高压清洗机清洗、有机溶剂清洗液清洗、酸洗、碱洗、水洗,该方法是通过化学方法与物理方法相结合的方式,去除金属及其合金SLM成型后样品表面所产生的氧化膜、粉末、手印、汗渍以及毛刺等。经过处理后SLM成型后金属及其合金样品表面状态得到改善,同时也避免了表面有害物质对样品的侵蚀。该方法清洗时对温度、压力等无过高要求,并且表现出较强的去污能力,清洗效率大大提高;同时生产和使用过程中无毒无害,长期使用无化学残留,不会对人体和环境造成危害。
-
公开(公告)号:CN113042748A
公开(公告)日:2021-06-29
申请号:CN202110255797.X
申请日:2021-03-09
Applicant: 中北大学
IPC: B22F10/28 , B22F10/64 , B22F12/13 , C22C1/04 , C22C21/16 , C22F1/057 , B33Y10/00 , B33Y70/00 , B33Y40/10 , B33Y40/20
Abstract: 本发明提供了一种SLM制备高强度高延伸率Al‑Cu‑Mg合金的方法。所述合金成分包括如下质量分数的成分:Cu:4‑6wt%;Mg:0.1‑3wt%;Ti:0.4‑1wt%,Zr:0.8‑2wt%;Mn:0.1‑3wt%;其余为Al,且以质量比计Ti/Zr大于等于0.4小于等于0.6。所述制备方法为:按设计配比配取原料并气雾化工艺制备出适于3D打印所需粒径范围的合金粉末;然后采用3D打印,得到沉积态SLM铝铜合金零件;步骤三对所得样品进行固溶时效热处理,得到高强韧的铝铜合金零件。与现有技术相比,本发明所得成品,其相对密度可达99.85%,维氏硬度可达172Hv,抗拉强度可达487MPa,屈服强度可达366MPa,延伸率超过13%。
-
-
-
-
-
-
-
-
-