-
公开(公告)号:CN117182322A
公开(公告)日:2023-12-08
申请号:CN202310945069.0
申请日:2023-07-28
Applicant: 哈尔滨工业大学
IPC: B23K26/362 , B23K26/70
Abstract: 本发明提供一种基于CO2激光的烧蚀快速去除和熔融抛光组合的熔石英微透镜阵列制备装置及制备方法,属于光化学加工领域。为解决针对熔石英类硬脆材料加工微透镜阵列时存在成本高、热稳定性差且加工精度不易控制,难以获得低成本、高质量微透镜阵列的问题。建立热力学和流体力学的耦合模型,对粗加工结构进行仿真进而确定粗加工参数,通过路径规划获得最佳扫描轨迹,采用高功率密度CO2激光烧蚀去除熔石英,实现微结构的快速成形;采用低功率密度CO2激光辐照微结构,实现其精密熔融抛光。通过使用一套CO2激光器加工微透镜阵列,降低了加工成本,避免了重复安装定位工件的问题,进一步提高加工效率,实现高效低成本制备高质量微透镜阵列。
-
公开(公告)号:CN116705198B
公开(公告)日:2023-11-17
申请号:CN202310241690.9
申请日:2023-03-14
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种水溶性KDP晶体元件表面微缺陷DPN修复过程液桥全范围计算方法,属于微纳制造技术领域。为了解决现有方法不适用于高环境湿度下液桥会覆盖延伸到锥形主体区域,及液桥形貌曲线与元件表面接触点处的斜率接近无穷大的极端情况,同时计算纳米尺度液桥形貌的误差曲线存在双解现象,极易求得错误的结果。本发明将AFM针尖模型构建为针尖球头和锥形本体根据探针针尖、KDP晶体元件和液桥形貌曲线的几何关系,构建液桥形貌曲线的参数化常微分方程及探针针尖复合轮廓的几何方程;采用粗寻根和精寻根两个步骤,并结合二分法对液桥形貌曲线进行求解。本发明方法更适用于高环境湿度条件下水溶性KDP晶体元件DPN修复过程液桥形貌的计算。
-
公开(公告)号:CN116882073A
公开(公告)日:2023-10-13
申请号:CN202310611461.1
申请日:2023-05-29
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , B23C3/00 , G06F30/20 , G06T17/00 , G06F119/14 , G06F111/10
Abstract: 本发明一种表征KDP晶体表面缺陷微铣削修复过程切削模式的方法,涉及光学元件加工技术领域,为解决现有方法将工件材料的表面假设为无缺陷表面,尚未建立考虑微缺陷存在的球头微铣削切削比能三维模型的问题。包括如下步骤:步骤一、选择修复工艺参数,测量晶体表面缺陷深度;步骤二、建立球头微铣削平均切削面积的三维计算模型;步骤三、采集表面缺陷微铣削修复过程中切削力;步骤四、构建球头微铣削修复过程的切削比能模型;步骤五、基于所述切削比能模型,分析微铣削修复过程中的切削模式。本发明为实际修复过程中表面质量的改善、尺寸效应的控制及工艺参数的优选提供参考,以进一步提高KDP晶体元件的修复表面质量。
-
公开(公告)号:CN114113112B
公开(公告)日:2023-08-18
申请号:CN202111428145.8
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于三光源显微系统的表面微缺陷定位与识别方法,涉及工程光学技术领域,用以解决现有技术对于大口径光学元件表面微缺陷不能准确识别和定位不精确的问题。本发明的技术要点包括:获取元件表面多个缺陷区域的初始位置;对于每个缺陷区域,利用吹尘前后的图像初步排除伪缺陷;对于保留的每个缺陷区域,利用预训练的缺陷预测模型进行预测,二次排除伪缺陷;对于经过二次排除后保留的每个缺陷区域,采用改变物距的自动聚焦方法和基于图像处理的缺陷目标提取方法对缺陷区域的初始位置进行修正,获取多个缺陷区域的精确位置。本发明排除了伪缺陷的干扰,并进一步提升了元件表面缺陷的定位精度,可为后续缺陷修复提供可靠数据支撑。
-
公开(公告)号:CN116429772A
公开(公告)日:2023-07-14
申请号:CN202310603520.0
申请日:2023-05-26
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种基于AFM的KDP晶体表层微纳缺陷检修装置、系统及方法,属于KDP晶体缺陷检修技术领域。为了解决现有KDP晶体在修复时主要采用微机械修复,但会在晶体表面残留修复痕迹,多次修复后会造成损伤;且检测精度有限,无法检测20μm以下缺陷的问题。包括双工位检测装置和AFM装置,利用双工位检测装置进行粗定位和精定位,二者的结合既能实现精准定位又能提高检测速度;利用AFM装置进行修复,相对于微机械修复来说,不会对KDP晶体表面造成机械损伤,可进行重复多次的修复,没有次数限制,能够有效延长其使用寿命。
-
公开(公告)号:CN115446462A
公开(公告)日:2022-12-09
申请号:CN202211063446.X
申请日:2022-08-31
Applicant: 哈尔滨工业大学
IPC: B23K26/352
Abstract: 本发明提供一种基于飞秒激光的光学元件表面微结构两步加工方法,属于工程光学技术领域。为解决现有技术中缺少光学元件表面微小结构的加工方法,而采用飞秒激光对光学元件表面进行微结构加工,往往存在粗糙度较大的问题。本发明方法包括如下步骤:根据微结构加工需求绘制加工轨迹图像,将待加工光学元件装夹在加工平台上并对其进行准确定位;调整激光光路为红外飞秒激光,将所述加工轨迹图像导入加工系统,设置加工参数对光学元件进行飞秒激光加工,得到初始微结构;将加工平台移动到振镜系统下,调整激光光路为紫外飞秒激光,设置加工参数,对初始微结构进行柔性抛光,得到最终微结构。通过本发明方法得到的光学元件表面微结构具有较高的质量。
-
公开(公告)号:CN115326804A
公开(公告)日:2022-11-11
申请号:CN202211068372.9
申请日:2022-09-02
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种熔石英元件表面损伤发起与损伤增长自动评价装置和方法,涉及光学元件技术领域,为解决现有技术在激光损伤阈值以及损伤增长测试过程中,需要频繁地装夹和拆卸熔石英元件对损伤进行检测,不但检测效率低,且重复安装元件的将导致误差的问题。该装置包括:X轴运动模组、Y轴运动模组、光学元件夹具组、相机及光源组和基座;X轴运动模组安装在基座上,Y轴运动模组垂直安装于X轴运动模组上,光学元件夹具组安装于Y轴运动模组上,相机及光源组的相机和背光源安装于X轴运动模组的相对两侧,相机、环形光源与背光源位于同一轴线上。本发明可实现熔石英元件表面损伤发起与损伤增长评价全流程自动化,具有较高的准确度。
-
公开(公告)号:CN114675611A
公开(公告)日:2022-06-28
申请号:CN202210366496.9
申请日:2022-04-08
Applicant: 哈尔滨工业大学
IPC: G05B19/418
Abstract: 一种针对悬臂梁状弱刚度微车刀外圆车槽的车削工艺参数优化方法,涉及超精密弱刚度微槽车削领域,为解决现有技术中没有针对悬臂梁状弱刚度微车刀挠度变形引起的加工误差进行优化的问题。具体过程为:步骤一、分析出影响刀具挠度变形的切削力分量,建立该切削力分量的函数模型;步骤二、根据切削力分量函数模型建立挠度变形的函数模型;步骤三、根据挠度变形函数模型建立实际进给距离的函数模型;步骤四、根据实际进给距离函数模型代入挠度变形的函数模型中进行循环计算,求得最终实际进给距离的函数模型;步骤五、根据最终实际进给距离的函数模型,建立槽深误差的函数模型,通过分析各参数对槽深误差的影响规律对各参数进行优选。
-
公开(公告)号:CN110389090B
公开(公告)日:2022-03-11
申请号:CN201910722708.0
申请日:2019-08-06
Applicant: 哈尔滨工业大学
IPC: G01N15/02
Abstract: 一种大口径反射镜表面颗粒污染物亚像素尺寸标定方法,本发明的目的是为了解决现有像素级尺寸标定方法精度低的问题。过程为:一、将整个通光域均分为4×4个子区域,制备与子区域尺寸相同的标定板,并在标定板上预置不同尺寸的二氧化硅颗粒;二、将标定板依次放置在反射镜表面均匀分割的不同的子区域上,并分别采集不同区域的标定板图片;三、得到颗粒污染物在图像中的位置坐标、像素面积、像素直径、总灰度信息;四、在超景深显微镜下测量颗粒污染物的实际直径和实际面积;五、训练污染物面积、直径标定模型,由训练好的污染物面积、直径标定模型对测试样本进行估计。本发明用于表面颗粒污染物亚像素尺寸标定领域。
-
公开(公告)号:CN114119556A
公开(公告)日:2022-03-01
申请号:CN202111428213.0
申请日:2021-11-29
Applicant: 哈尔滨工业大学
IPC: G06T7/00 , G06T7/60 , G06T7/70 , G06T5/50 , G06T3/40 , G06V10/74 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 一种熔石英元件表面缺陷激光修复质量的自动检测方法,涉及工程光学技术领域,用于检测熔石英元件表面缺陷的修复质量。本发明的技术要点包括:改变相机和元件之间的距离,采集对应不同聚焦状态下包含修复坑的多个图像;对不同聚焦状态下的多个图像进行景深融合,获取包含修复坑的清晰图像;将包含修复坑的清晰图像输入预训练的残余损伤检测模型,获取检测结果。本发明通过单幅拍照和扫描拍照结合的方式实现了不同尺寸修复坑图像的自动采集,使用景深融合与图像拼接方法获得了修复坑完整的全景深图像,使用基于卷积神经网络的目标检测方法实现了修复坑残余损伤的检测。本发明无需人工干预,可应用于元件表面缺陷修复后对于修复质量的自动检测。
-
-
-
-
-
-
-
-
-