-
公开(公告)号:CN115617071B
公开(公告)日:2024-10-18
申请号:CN202211224098.X
申请日:2022-10-07
Applicant: 哈尔滨工程大学
IPC: G05D1/695 , G05D109/20
Abstract: 本发明设计了量子雪豹机制的多无人机对抗任务规划方法,每个目标都有三个任务:勘察,袭击和评估,三个任务严格按照时间顺序执行。为了实现三种任务的时间耦合,本发明设计了协同对抗和独立对抗并行使用的战斗方略,有效解决了时间约束问题。本发明设计的量子编码的雪豹量子位置演化机制,得到一种新的量子雪豹机制方法,量子雪豹中的移动追踪策略用于全局搜索,狩猎策略用于局部搜索,种群繁衍和灭绝策略用于淘汰劣等量子雪豹个体,三种策略协同优化适应度函数,克服了过去方法容易陷入局部收敛的弊端,也提升了演化机制的寻优速率。
-
公开(公告)号:CN114910879B
公开(公告)日:2024-07-12
申请号:CN202210594255.X
申请日:2022-05-27
Applicant: 哈尔滨工程大学
IPC: G01S7/41 , G06F18/23213 , G06N3/006 , G06N10/60
Abstract: 本发明公开了一种双基地MIMO雷达测向方法,步骤一、获取接收信号快拍采样数据并进行匹配滤波,构造MUSIC空间谱函数;步骤二、初始化个体量子位置,构造适应度函数;步骤三,将种群分为P个群体,进行适应度函数评价,选择群体最优量子位置;步骤四、所有群体中每个个体依概率选择猎人演化或猎物演化更新量子位置;步骤五、将所有群体中个体更新后量子位置映射为位置,计算更新后适应度函数值,更新每个群体中全局最优量子位置;步骤六、对最优量子位置集合中元素进行局部开发;步骤七、若未达到最大迭代次数,令g=g+1,返回步骤三;否则输出全局最优量子位置集合,经过映射变换为全局最优位置。本发明具有强鲁棒性、快速、高精度特点。
-
公开(公告)号:CN116582158A
公开(公告)日:2023-08-11
申请号:CN202310354609.8
申请日:2023-04-06
Applicant: 哈尔滨工程大学
IPC: H04B7/0413 , H04B7/08 , G06N10/20 , G06N10/60
Abstract: 本发明公开了一种大规模MIMO方阵信源数与波达方向联合估计方法包括:建立冲击噪声环境下MassiveMIMO方阵模型;构造基于拉普拉斯核相关熵的加权信号子空间拟合方程;利用分段式思想,化简得到目标函数;初始化个体量子位置,获得全局最优量子位置;初始化量子冰晶能量值,确定临时湖中心位置;更新能量值和历史量子位置空间;更新量子位置;根据轮盘赌选择产生新一代量子冰晶,更新全局最优量子位置;判断是否达到最大迭代次数,若未达到,返回步骤五;判断该信源是否存在,若存在,返回步骤三,否则输出信源数及相应波达方向。本发明具有鲁棒性、高精度的特点和更广泛的应用范围。
-
公开(公告)号:CN113378103B
公开(公告)日:2023-05-05
申请号:CN202110611610.5
申请日:2021-06-02
Applicant: 哈尔滨工程大学
Abstract: 发明公开了一种强冲击噪声下相干分布源动态跟踪方法,具体是在强冲击噪声下设计了一种加权范数分数低阶相关矩阵,在此基础上设计基于加权范数低阶相关矩阵的极大似然动态跟踪方法进行相干分布源动态跟踪,并通过量子标杆学习机制快速得到跟踪结果。本发明设计了更具鲁棒性的基于量子标杆学习机制的相干分布源动态跟踪方法,在强冲击噪声下设计了加权范数分数低阶相关矩阵,并利用极大似然跟踪方法实现了动态跟踪。设计了加权范数分数低阶相关矩阵,能够分辨相干信源,在强冲击噪声下实现了对动态目标的有效跟踪,设计的量子标杆学习机制可以对加权范数分数低阶相关矩阵极大似然方程进行高精度求解,快速准确的得到跟踪结果。
-
公开(公告)号:CN113608546B
公开(公告)日:2022-11-18
申请号:CN202110783634.9
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供一种量子海狮机制的无人机群任务分配方法,针对无人机群实际环境中任务分配效能较低的难题,设计了量子海狮机制求取最优任务分配矩阵,以无人机执行任务所获得的价值以及其对应付出的代价设计出效能函数,并利用无人机航程限制、任务限制、弹药限制等约束条件设计出惩罚函数,最终将效能函数与惩罚函数结合得到适应度函数。本发明考虑了设计无人机路径问题,并引入了多种无人机并分别执行多种任务,如侦察机执行侦察和战场评估任务,轰炸机执行攻击目标任务,战斗机执行侦察、攻击目标和战场评估任务。同时,利用量子海狮机制计算最优解,提高无人机群的任务分配效能。
-
公开(公告)号:CN114510330A
公开(公告)日:2022-05-17
申请号:CN202210091586.1
申请日:2022-01-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供基于量子被囊群搜索机制的云计算任务调度方法,包括:根据任务与虚拟机的分配矩阵,构建任务在虚拟机上的执行时间矩阵和执行成本矩阵并构建数学模型;初始化被囊群搜索机制的量子位置并设定参数;计算每只被囊的适应度值,根据每只被囊的适应度值将全部被囊进行排序;根据被囊群搜索机制产生量子旋转角,使用模拟的简化量子旋转门更新被囊的量子位置;应用贪心策略,确定新一代被囊群的量子位置,根据适应度值将全部被囊进行排序;判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤四;若达到,则终止迭代循环,根据最后一代中的最优量子位置的映射位置所对应的任务与虚拟机的分配矩阵得到最终的任务调度策略。
-
公开(公告)号:CN113783809A
公开(公告)日:2021-12-10
申请号:CN202111026332.3
申请日:2021-09-02
Applicant: 哈尔滨工程大学
IPC: H04L25/02 , H04B7/0413
Abstract: 本发明提供基于二进制人工藻类机理的Massive MIMO信道估计方法。本发明针对现有的毫米波稀疏信道估计,提出了一种基于二进制人工藻类机制优化StOMP的信道估计方法,以解决估计性能不佳的问题。传统的StOMP信道估计方法在基站侧发射角发生变化时需要手动调整门限参数,基于二进制人工藻类机制的StOMP信道估计方法能够实现对参数的自适应调整,从而达到自适应信道估计的目的。仿真结果表明,当实际环境中基站侧发射角和发射功率发生变化,基于二进制人工藻类机制的StOMP信道估计方法能够自适应搜索出最佳门限参数,取得了较好的估计性能。
-
公开(公告)号:CN113552530A
公开(公告)日:2021-10-26
申请号:CN202110723576.0
申请日:2021-06-29
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子鼠群的近场和远场源混合测向方法,在获得远场源角度的基础上构建出分离算子,通过该算子可以获得远场源四阶累积量矩阵,通过四阶累积量矩阵差分获得纯净的近场源四阶累积量矩阵,并通过量子鼠群机制进行参数搜索的相关过程,解决现有的混合源测向方法存在角度模糊和远近场信号源分离方法低效的技术难题。本发明可以快速的得到较精确的混合源测向结果,并且不存在量化误差,通过四阶累积量矩阵可以扩展阵列孔径,提高测向精度,相对于传统的近场和远场源混合测向方法速度更快、精度更高、突破了现有方法的应用局限。
-
-
-
-
-
-
-