-
公开(公告)号:CN116170138B
公开(公告)日:2025-05-09
申请号:CN202310131205.2
申请日:2023-02-17
Applicant: 哈尔滨工程大学
IPC: H04L9/08 , H04L9/40 , H04L67/10 , G06F18/23213
Abstract: 本发明公开了一种基于线性变换的K‑means聚类的隐私保护外包方法,所述方法包括如下步骤:1、数据拥有者使用密钥生成算法随机生成一个密钥;2、数据所有者对D中每条记录对应的索引顺序和属性顺序进行置换得到D',数据所有者使用密钥将D'转化为D”并发送到云端;3、云执行K‑means均值聚类任务,并返回K‑means聚类结果和每个聚类的质心给数据拥有者;4、数据拥有者对聚类结果进行验证;5、数据所有者在验证成功云返回的聚类结果后,通过π1恢复D”中每条记录对应的索引顺序,得到真实的K‑means聚类结果。该方法通过高效的线性变换技术能够实现100%的准确率、安全性、高效性和可验证性。
-
公开(公告)号:CN119272919A
公开(公告)日:2025-01-07
申请号:CN202411301402.5
申请日:2024-09-18
Applicant: 哈尔滨工程大学
IPC: G06Q10/04 , G06Q50/00 , G06Q50/26 , G06N3/0455 , G06N3/0985
Abstract: 本发明提供了一种基于多特征序列的社会搜索热点传播预测方法、系统、程序、设备及存储介质。本发明考虑了事件序列中的时间信息、事件类型信息、用户信息以及用户属性信息,利用Transformer模型对社会搜索热点事件序列进行表示学习,将学习出来的表示向量作为Hawkes过程的输入,使其更好的捕捉事件之间的相互影响关系。本发明依据历史事件的强度函数对事件序列进行预测:短期预测是预测下一事件发生的时间与事件类型,长期预测是事件在给定时间区间内的传播大小,以取得更好的序列数据拟合与序列预测效果。
-
公开(公告)号:CN119271906A
公开(公告)日:2025-01-07
申请号:CN202411301441.5
申请日:2024-09-18
Applicant: 哈尔滨工程大学
IPC: G06F16/9536 , G06Q50/00 , G06F16/28
Abstract: 本发明提供的是一种面向符号社会网络正面信息最大化传播方法、程序、设备及存储介质。本发明使用基于符号潜在因子的链接预测模型来进行链接预测,补全网络链接关系的缺失。在此基础上通过采用基于符号的PageRank算法选择种子节点传播信息,使得正面信息影响力最大化。本发明考虑到当前网络中用户关系缺失以及关系复杂这些问题,能够通过链接预测技术对网络结构进行完善,基于完整的网络结构,通过种子节点选择算法选择最有影响力的种子节点传播信息,从而使得信息的正面信息影响力最大化。
-
公开(公告)号:CN118520070A
公开(公告)日:2024-08-20
申请号:CN202410508778.7
申请日:2024-04-26
Applicant: 哈尔滨工程大学
IPC: G06F16/33 , G06F16/35 , G06F16/36 , G06F16/9536 , G06Q50/00 , G06F40/30 , G06N3/0455 , G06N3/042 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提供的是一种基于语义增强的仇恨言论检测方法、系统及存储介质。本发明提出了基于语义增强的仇恨言论检测模型HSIBSE。其中包括信息嵌入层装置、文本嵌入层装置、编码层装置和输出层装置。通过使用仇恨言论词典,对文本进行分类,将其划分为含有负面性词语和不含负面性词语的两个类别。对每个词语,本发明将其与负面性词语词典中的词汇进行匹配,以确定其是否属于负面性词语。能够更准确地识别和分析仇恨言论,并为仇恨言论检测提供重要线索。本发明设计了一种基于语义增强的仇恨言论检测系统及方法,加强上下文理解,分析仇恨言论中的情感倾向,增强信息关联,有助于识别某些文本中的隐含信息,可广泛应用于社交网络中的互仇恨言论检测。
-
公开(公告)号:CN118473716A
公开(公告)日:2024-08-09
申请号:CN202410508805.0
申请日:2024-04-26
Applicant: 哈尔滨工程大学
IPC: H04L9/40
Abstract: 本发明属于匿名网络隐私保护技术领域,具体涉及一种网站指纹识别防御系统、方法、程序、设备及存储介质。本发明是一种零延迟低开销的防御,可以实现在不需要延迟用户数据包且仅填充少量虚假数据包的情况下,对网站指纹攻击的有效防御;此外,考虑防御的实际可行性,本发明提出的防御是一种不需要先验知识的网站指纹防御策略,能够在不需要知道用户访问的网站以及历史流量序列的情况下实施防御。本发明通过在网络流量中注入不同分布的数据包,破坏了网站固有模式,大幅度降低了了网站指纹识别的有效性,可部署在匿名网络系统中,并适用于多种匿名网络场景中的网站指纹识别防御。
-
公开(公告)号:CN118449729A
公开(公告)日:2024-08-06
申请号:CN202410508796.5
申请日:2024-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于信息安全技术领域,具体涉及一种基于图神经网络与稳定学习思想的恶意流量识别系统、方法、程序、设备及存储介质。本发明采用网络流量图建模的方式实现了对网络通信行为的有效表达,利用基于有偏采样的子图划分机制去除数据分布偏移情况下目标边邻域内可能产生的伪同质关系,使用改进的GraphSAGE将学习网络流量的高维嵌入,保留其流量统计特征及结构属性。本发明能够实现对网络流量通信行为交互模式的显式表达,进而全面表征流内统计性特征及流间关联性特征,能够在显式去除流间伪同质性的同时,隐式消除流量表征的虚假统计相关性,以获得稳定鲁邦的流量表示。
-
公开(公告)号:CN118349748A
公开(公告)日:2024-07-16
申请号:CN202410508779.1
申请日:2024-04-26
Applicant: 哈尔滨工程大学
IPC: G06F16/9536 , G06Q50/00 , G06F18/24 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了一种跨网络数字取证的锚链接预测方法、系统及存储介质。将不同的社交网络视为具有不同网络结构的不同客户端,并对每个客户端执行UNSE以获得潜在特征空间,以突出节点的不确定性,使其更适合跨网络任务,再基于联邦学习框架,并使用基于可观察锚链接的对抗性学习来减少潜在特征空间之间的语义差异。本发明对锚链接进行二值分类预测,根据跨网络链路的特点,将跨网络链路分为锚链路和非锚链路,将不同的社会网络纳入表征学习,产生更有效的跨网络特征,从而可以更好地识别锚链接。本发明通过FSFN方法放大了相邻节点的识别,减少了潜在特征空间之间的差异,构建了有效的公共潜在特征空间,从而提高了锚链预测的性能。
-
公开(公告)号:CN118332201A
公开(公告)日:2024-07-12
申请号:CN202410508793.1
申请日:2024-04-26
Applicant: 哈尔滨工程大学
IPC: G06F16/9536 , G06Q50/00 , G06F16/28
Abstract: 本发明提供的是一种面向符号社会网络正面信息最大化传播方法、系统及存储介质。本发明使用基于符号潜在因子的链接预测模型来进行链接预测,补全网络链接关系的缺失。在此基础上通过采用基于符号的PageRank算法选择种子节点传播信息,使得正面信息影响力最大化。本发明考虑到当前网络中用户关系缺失以及关系复杂这些问题,能够通过链接预测技术对网络结构进行完善,基于完整的网络结构,通过种子节点选择算法选择最有影响力的种子节点传播信息,从而使得信息的正面信息影响力最大化。
-
公开(公告)号:CN118296650A
公开(公告)日:2024-07-05
申请号:CN202410508800.8
申请日:2024-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于联邦学习框架下的防御技术领域,具体涉及一种基于生成对抗网络和梯度平滑的隐私保护方法、程序、设备及存储介质。本发明主要针对联邦学习架构中利用生成对抗网络发起的梯度泄露攻击进行防御,根据攻击的特点,在客户端部署WGAN,利用WGAN生成的伪数据参与到本地模型的训练中。同时为了防止敌手进行隐私推理攻击,本发明采用了梯度平滑技术,将生成伪数据视觉特征进行破坏,同时保留伪数据的分类特征;其次,为了最小程度的影响本地模型的精度,本发明借用Mix‑up技术,利用客户端本身的隐私数据对经过特征处理的伪数据进行特征修复。使其能够最大限度的保证本地模型的性能,同时又能对梯度泄露攻击进行很好的防御。
-
公开(公告)号:CN118296250A
公开(公告)日:2024-07-05
申请号:CN202410508790.8
申请日:2024-04-26
Applicant: 哈尔滨工程大学
IPC: G06F16/9536 , G06Q50/00 , G06N3/0455 , G06N3/0499 , G06N3/08
Abstract: 本发明提供了一种基于多特征序列的舆情传播预测方法、系统及存储介质。本发明系统包括事件流分析装置、事件序列编码装置、事件表示学习装置、舆情预测装置。方法为读取模型所需参数,并用计算到的时间编码得到事件类型编码,进一步获取到所需的嵌入向量,通过注意力机制输出序列结果从而获取到事件在任意时刻的发生概率。本发明考虑了事件序列中的时间信息、事件类型信息、用户信息以及用户属性信息,利用Transformer模型对舆情事件序列进行表示学习,将学习出来的表示向量作为Hawkes过程的输入,使其更好的捕捉事件之间的相互影响关系。本发明依据历史事件的强度函数对事件序列进行预测:短期预测是预测下一事件发生的时间与事件类型,长期预测是事件在给定时间区间内的传播大小,以取得更好的序列数据拟合与序列预测效果。
-
-
-
-
-
-
-
-
-