基于图神经网络的主导失稳模式识别模型构建及应用方法

    公开(公告)号:CN112200694A

    公开(公告)日:2021-01-08

    申请号:CN202011071486.X

    申请日:2020-10-09

    Abstract: 本发明公开了一种基于图神经网络的主导失稳模式识别模型构建及应用方法,属于电力系统稳定性判断领域。本发明所构建的加权图结构能够较好的体现电网拓扑。在模型训练之前,根据样本集的电网拓扑预先构建对应地图结构;训练过程中,图结构的作用相当于将原始的矩阵类型数据转化为图结构数据,测试结果表明,考虑了电网拓扑结构的图神经网络方法相对于不考虑拓扑的卷积神经网络方法而言,具有更高的判别精度;本发明对依据电网拓扑构成的图结构,采用各传输线的导纳对图进行加权处理,能够进一步强化电网的拓扑信息,使得模型更加契合电网这种特殊的图结构,增强了所输入的图构中包含的电网拓扑特征,使得模型有更好的判断准确率。

    考虑发电机性能差异的励磁顶值电压优化配置方法及系统

    公开(公告)号:CN110571834B

    公开(公告)日:2020-11-24

    申请号:CN201910902993.4

    申请日:2019-09-24

    Abstract: 本发明公开了一种考虑发电机性能差异的励磁顶值电压优化配置方法及系统,方法包括在预想故障下对发电机分群,进行多机系统的单机等值得到等值功角曲线;进行励磁顶值电压增量扰动,计算各发电机对系统故障恢复的调节性能指标;选取对系统故障恢复的调节性能指标最大的发电机,完成励磁顶值电压的一轮配置,判断是否达到系统稳定性能改善目标,若是,结束配置;否则,判断更新后发电机的励磁顶值电压继续增加一个扰动步长是否达到预设的配置上限,若是,选取仍有励磁顶值电压提升裕度的发电机进行下一轮配置;否则,继续进行励磁顶值电压增量扰动。本发明可以实现发电机励磁顶值电压差异化配置,较好改善系统暂态稳定性,提升区域联络线输送功率。

    一种电力系统薄弱线路辨识方法

    公开(公告)号:CN109873406B

    公开(公告)日:2019-11-22

    申请号:CN201910240922.2

    申请日:2019-03-28

    Abstract: 本发明涉及一种电力系统薄弱线路辨识方法,该辨识方法基于Q学习算法,根据电网当前运行状态信息,采用ε‑贪婪策略探索不同故障切线组合,通过电网暂态稳定仿真,计算验证所给出的故障切线组合下的系统暂态安全稳定性。接着,Q学习算法结合暂稳仿真计算结果,不断更新不同切线组合的Q值,筛选出容易导致系统失稳的切线组合。最后,基于不同切线组合的Q值,提出线路薄弱度指标,计算得到考虑电网暂态安全稳定性的薄弱线路。本发明利用Q学习算法能有效辨识出考虑系统暂态安全稳定性的薄弱线路,所需的仿真次数远少于故障遍历辨识方法,极大地减少了电网运行专家与技术人员在不同运行方式下进行稳定分析与潮流调整的工作量。

    一种电力系统薄弱评估智能体训练方法、评估方法和系统

    公开(公告)号:CN113452026B

    公开(公告)日:2022-09-20

    申请号:CN202110731653.7

    申请日:2021-06-29

    Abstract: 本发明公开了一种电力系统薄弱评估智能体训练方法、评估方法和系统,属于电力系统薄弱评估领域。本发明基于深度强化学习算法与电力系统连锁故障模型,基于深度Q网络的智能体决策最易导致电力系统崩溃的攻击线路,基于电力系统连锁故障模型模拟受攻击线路退出运行后的潮流转移过程,自动切除潮流越限最严重的输电线路。继续利用智能体决策攻击线路,直至停运线路或损失负荷达到一定的阈值,判定电力系统崩溃,并输出智能体决策的攻击序列。在此过程中,存储强化学习所需的经验样本并训练更新智能体。本发明利用深度强化学习算法训练得到的智能体,能有效决策出当前潮流工况下,最易导致电力系统崩溃的攻击序列,从而评估电力系统的薄弱程度。

Patent Agency Ranking