-
公开(公告)号:CN108711729B
公开(公告)日:2019-05-17
申请号:CN201810553115.1
申请日:2018-05-31
Applicant: 哈尔滨工业大学
IPC: H01S3/08
Abstract: 基于单向环形腔的2μm单频可调谐固体激光器,它涉及一种单频固体激光器,属于光学领域,解决现有2μm单频固体激光器输出功率下降、光束质量劣化和频率稳定性不高的问题。本发明入射至耦合系统的泵浦光依次经过泵浦光输入镜、F‑P标准具及晶体,晶体在泵浦光的抽运下产生顺时针和逆时针方向传播的振荡光,然后泵浦光经过二色镜后透射出去;顺时针方向传播的振荡光依次经过二色镜、第三平凸透镜及输出镜,部分振荡光经输出镜透射出去,剩余部分经输出镜、光隔离器、二分之一波片、反射镜及泵浦光输入镜,经泵浦光输入镜反射后继续经过F‑P标准具、晶体、二色镜、第三平凸透镜及输出镜,最后形成增益从输出镜透射出去成为2μm单频激光。
-
公开(公告)号:CN109650901A
公开(公告)日:2019-04-19
申请号:CN201910099464.5
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/5835 , B33Y70/00
Abstract: 本发明公开一种BN-Mg2Al4Si5O18复相陶瓷材料、其制备方法及包括该陶瓷材料的陶瓷构件,所述BN-Mg2Al4Si5O18复相陶瓷材料的制备方法包括:步骤S1,以聚环硼氮烷作为前驱体,加入交联固化剂及催化剂,制得前驱体溶液;并配置Mg2Al4Si5O18悬浮液;步骤S2,将所述Mg2Al4Si5O18悬浮液加入至所述前驱体溶液中,得到复合溶液,将所述复合溶液旋蒸处理,获得复合打印墨水;步骤S3,利用无模直写成型技术将所述复合打印墨水打印出陶瓷前驱体材料;步骤S4,将所述陶瓷前驱体材料进行固化处理,再将固化后的陶瓷前驱体材料进行氨气裂解,获得复相陶瓷材料;步骤S5,对所述复相陶瓷材料进行烧结处理。本发明制得的BN-Mg2Al4Si5O18复相陶瓷材料具有较高的致密性,且晶粒细小、成分均匀。
-
公开(公告)号:CN109650864A
公开(公告)日:2019-04-19
申请号:CN201910099482.3
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/626
Abstract: 本发明公开一种锶长石基复合陶瓷透波材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述锶长石基复合陶瓷透波材料的制备方法包括:S1:称取h-BN粉、SrCO3粉、Al2O3粉和SiO2粉并混合,得到第一粉体;S2:将所述第一粉体进行球磨,得到第二粉体;S3:将所述第二粉体压制成生坯,得到预制生坯;S4:对所述预制生坯进行无压烧结,得到锶长石基复合陶瓷透波材料。本发明提供的锶长石基复合陶瓷透波材料的制备方法,通过原位合成反应来将h-BN引入锶长石中,使得制备的锶长石基复合陶瓷透波材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐热冲击性能。
-
公开(公告)号:CN109553431A
公开(公告)日:2019-04-02
申请号:CN201811509880.X
申请日:2018-12-11
Applicant: 哈尔滨工业大学
IPC: C04B35/82 , C04B35/622 , C04B35/626 , C04B35/14 , C04B35/10
Abstract: 中空石英纤维织物强韧陶瓷基复合材料的制备方法,本发明涉及一种陶瓷基复合材料的制备方法,它为了解决现有飞行器承热结构材料的密度大,力学性能较低的问题。制备方法:一、将中空石英纤维织物浸泡到有机溶剂中进行去胶处理;二、将去胶的石英纤维织物置于无机表面改性剂溶液中浸泡处理,得到表面防护处理的石英纤维织物;三、石英纤维织物先浸渍高浓度陶瓷水溶液,再浸入低浓度陶瓷水溶液;四、石英纤维织物在300~500℃温度下进行高温脱水处理;五、依次重复步骤三的浸渍处理和步骤四预烧结;六、高温烧结。本发明通过表面防护处理和浸渍处理使织物结构稳定,力学性能优异,复合材料的表观密度仅为1.0~1.5g/cm3。
-
公开(公告)号:CN109437813A
公开(公告)日:2019-03-08
申请号:CN201811510762.0
申请日:2018-12-11
Applicant: 哈尔滨工业大学
IPC: C04B28/26 , C04B35/80 , C04B35/622 , C04B35/18 , C04B35/19 , C04B35/447
Abstract: 低温冷烧制备无机聚合物复合材料的方法及其陶瓷化应用,本发明涉及一种无机聚合物复合材料的制备方法及其应用,它为了解决现有无机聚合物的力学性能低和烧结温度高的问题。制备方法:一、将硅酸盐粉体、铝硅酸盐粉体以及第二相材料采用高能球磨工艺混合;二、无机聚合物复合材料干粉加入水和减水剂,机械搅拌均匀,获得塑性无机聚合物坯体;三、坯体加压保温成型,控制加压成型的压力为250~600Mpa;四、成型后的试样置于烘箱中固化,得到无机聚合物复合材料。无机聚合物复合材料在400~800℃温度下进行高温陶瓷化处理,得到陶瓷化产物。本发明制备的无机聚合物复合材料力学性能优良,且高温陶瓷化温度低。
-
公开(公告)号:CN106281218B
公开(公告)日:2018-07-06
申请号:CN201610624239.5
申请日:2016-08-02
Applicant: 哈尔滨工业大学
IPC: C09K3/00
Abstract: 本发明公开了一种铝硅酸盐聚合物制备的碳基吸波材料的制备方法,碳基吸波材料由偏高岭土、碳素材料和碱激发溶液合成铝硅酸盐聚合物后固化而成,其中所述的偏高岭土与碳素材料的摩尔比为1:(3~24),所述的铝硅酸盐聚合物中硅与铝的摩尔比为(1~2):1。碳基吸波材料的制备方法包括:高岭土的活化、混合粉体的制备、碱激发溶液的制备、铝硅酸盐聚合物的制备、固化成型五个步骤。该方法制备工艺简单,可低温直接成型复杂或大型部件,适用广泛。利用该方法制备的吸波材料,成本低,单位厚度吸收率高,满足薄、轻、宽、强等特点。
-
公开(公告)号:CN107732637A
公开(公告)日:2018-02-23
申请号:CN201710978047.9
申请日:2017-10-18
Applicant: 哈尔滨工业大学
CPC classification number: H01S3/0405 , H01S3/042 , H01S3/091 , H01S3/1608 , H01S3/1643
Abstract: 本发明涉及一种LD泵浦的单纵模连续波1645nm固体激光装置,包括泵浦激光器(1)、第一反射镜(2)、单块非平面环形腔Er:YAG晶体(3)、热沉(4)、冷却装置(5)、温控系统(6)、散热片(7)、磁场装置(8)、光电探测器(9);所述的单块非平面环形腔Er:YAG晶体(3)通过铟嵌入热沉(4)内,所述热沉(4)开有多个盲孔,内嵌多个温度传感器,所述多个传感器将热沉不同位置的温度实时传送到温控系统(6);所述温控系统(6)发出点阵式温控指令,所述点阵式温控指令控制所述冷却装置(5)的电压进而控制所述热沉(4)的每一点阵部位的温度使其与模拟值匹配。从而获得稳定的高功率激光输出。
-
公开(公告)号:CN106747443A
公开(公告)日:2017-05-31
申请号:CN201611030333.4
申请日:2016-11-16
Applicant: 哈尔滨工业大学
IPC: C04B35/515 , C04B35/624
Abstract: 本发明提供了一种溶胶凝胶法引入高温第二相碳化锆制备硅硼碳氮‑碳化锆复相陶瓷的方法,属于硅硼碳氮陶瓷基复合材料技术领域。本发明的材料以正丙醇锆、糠醇、盐酸、乙酰丙酮和乙醇为原料,溶胶凝胶引入第二相所占硅硼碳氮的质量比为5~20:100,所述的正丙醇锆:糠醇:盐酸摩尔比为1:2:1,所述的硅粉与六方氮化硼粉体的质量比为1:0.1~1.2。方法是碳化锆前驱体溶液的制备,硅硼碳氮陶瓷复合粉末的制备,粉末前驱体的制备,粉末的制备,最后将粉末放在热压中进行热压烧结,烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa,烧结气氛为氩气。溶胶凝胶所引入的前驱体碳热还原反应生成碳化锆,保持了硅硼碳氮基体的性能。
-
公开(公告)号:CN106518075A
公开(公告)日:2017-03-22
申请号:CN201611030272.1
申请日:2016-11-16
Applicant: 哈尔滨工业大学
IPC: C04B35/515 , C04B35/80 , C04B35/64 , C04B35/622
CPC classification number: C04B35/515 , C04B35/622 , C04B35/64 , C04B35/806 , C04B2235/3804 , C04B2235/386 , C04B2235/425 , C04B2235/428 , C04B2235/666 , C04B2235/96
Abstract: 本发明提供了一种片层状BN(C)晶粒增韧的Si-B-C-N陶瓷的制备方法,属于Si-B-C-N陶瓷制备方法技术领域。步骤一、按照摩尔比和质量比称取立方硅粉、六方氮化硼粉、石墨粉和六硼化镧粉作为原料备用;步骤二、将步骤一称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨即获得含有LaB6的Si-B-C-N陶瓷复合粉末;其中球料质量比为10~90:1,磨球直径为5~9mm,球磨时间为10~60h;步骤三、将步骤二获得的陶瓷复合粉末进行放电等离子烧结即可获得片层状BN(C)晶粒增韧的Si-B-C-N陶瓷材料。本发明制备方法得到的硅硼碳氮陶瓷材料具有较高的断裂韧性,降低了陶瓷发生“灾难性”断裂的可能性;添加的稀土化合物LaB6促成了片层状BN(C)晶粒的原位生长。
-
公开(公告)号:CN105036780B
公开(公告)日:2017-01-25
申请号:CN201510530967.5
申请日:2015-08-26
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/14 , C04B35/622
Abstract: 一种莫来石纤维增强熔石英复合材料的制备方法,它涉及一种纤维增强熔石英复合材料的制备方法。本发明的目的是要解决现有熔石英复合材料质脆及对应力集中和微裂纹敏感的问题。方法:一、制备熔石英复合粉体;二、莫来石纤维预处理;三、将熔石英复合粉体浆料与莫来石纤维分散液混合;四、去除溶剂;五、装模成型;六、热压烧结,得到莫来石纤维增强熔石英复合材料。本发明制备的莫来石纤维增强熔石英复合材料的抗弯强度为23.3MPa~27.4MPa,断裂韧性为0.8MPa·m1/2~1.1MPa·m1/2。本发明可获得一种莫来石纤维增强熔石英复合材料的制备方法。
-
-
-
-
-
-
-
-
-