-
公开(公告)号:CN115072717B
公开(公告)日:2024-04-12
申请号:CN202210656914.8
申请日:2022-06-10
Applicant: 哈尔滨工业大学
Abstract: 使用金属铁刻蚀高温高压金刚石制备定点浅层NV色心的方法,它为了解决现有制备金刚石内NV色心需要用到复杂的化学气相沉积气氛或大型粒子注入设备,且难以控制色心制备定位等问题。获得定点浅层NV色心的方法:一、清洗高温高压金刚石;二、在金刚石表面沉积铁薄膜,铁薄膜呈点阵排列;三、将带有铁薄膜的金刚石放入CVD生长舱体内,通入氢气,升高气压和功率进行刻蚀处理;四、将退火后的金刚石置入食人鱼溶液浸泡。本发明利用金属铁在等离子体环境下对高温高压金刚石进行刻蚀,在该过程中产生空位,并利用退火使得空位向下迁移并被替位氮原子捕获,由于刻蚀发生在金属薄膜与金刚石的界面处,因此产生的NV色心位于近表面处。
-
公开(公告)号:CN117438781A
公开(公告)日:2024-01-23
申请号:CN202311291841.8
申请日:2023-10-08
Applicant: 哈尔滨工业大学
IPC: H01Q1/36 , B23K26/362 , B23K26/70 , B23K26/60 , B23K26/142 , B23K26/402 , H01Q1/38 , H01Q1/52 , G01D5/48 , G01R33/02
Abstract: 金刚石表面烧蚀获得石墨化原位天线的方法及其应用,本发明为了解决现有微波天线受外界因素的干扰较大且不能较好的提高系统集成度等问题。获得石墨化原位天线的方法:一、对金刚石基底进行清洗;二、在清洗后的金刚石基底表面旋涂一层光刻胶,按照天线图案进行光刻,光刻后置于显影液中浸泡形成掩膜;打开射频电源输入50~100W的能量进行等离子体启辉,然后打开挡板沉积过渡金属薄膜;将金刚石基底放入石英玻璃管中进行真空封管,高温加热处理。本发明还涉及一种通过激光烧蚀获得石墨化原位天线的方法。本发明通过在金刚石表面利用过渡金属高温催化刻蚀或激光烧蚀,获得石墨化天线图案,该天线能更好的减小外界因素干扰,提高了集成度。
-
公开(公告)号:CN115044973B
公开(公告)日:2023-07-07
申请号:CN202210673216.9
申请日:2022-06-14
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石表面金属阵列外延生长获得局域增强色心发光的方法,本发明是为了解决现有CVD制备金刚石内杂质原子浓度过高,色心转换效率过低的问题。金刚石表面金属阵列外延生长方法:一、清洗;二、采用光刻工艺在金刚石基底上沉积复合金属膜,复合金属膜呈间隔的条纹状;三、将带有复合金属膜的金刚石放入CVD生长舱体内,启动微波发生器,升高气压和功率,使金刚石表面温度达到700~1000℃,通入甲烷和掺杂元素气体,进行外延生长。本发明通过在金刚石表面沉积金属图案,通过CVD原位沉积横向外延生长,工艺流程简单,制备得到了高杂质转换率、高荧光强度色心的样品,从而有效提升色心的自旋相干性能。
-
公开(公告)号:CN116352210A
公开(公告)日:2023-06-30
申请号:CN202310479228.2
申请日:2023-04-28
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石电烙铁及其制备方法,本发明要解决现有金属制烙铁头容易在高温下产生氧化、不沾锡、被酸性助焊剂腐蚀等问题。金刚石电烙铁的制备方法:一、将金刚石块件放置在激光切割机样品台上,用激光将金刚石块件切割成条状;二、再用激光将烙铁头基体的一端切割成多棱锥状,作为电烙铁头的接触端;三、使用磨床将烙铁头基体接触端的尖棱锥磨出圆角;四、在烙铁头基体表面镀上钛膜或钨膜,然后在惰性气氛下以600~900℃原位退火处理;五、将金属化后的烙铁头基体与热单元和外壳装配组装。本发明通过使用金刚石制备电烙铁头,使电烙铁头具有抗腐蚀抗氧化、导热快热效应高、超高硬度抗磨损、易沾锡、绝缘无电感、不损伤电子元器件等优点。
-
公开(公告)号:CN114717655B
公开(公告)日:2023-04-07
申请号:CN202210422761.0
申请日:2022-04-21
Applicant: 哈尔滨工业大学
IPC: C30B25/18 , C30B25/04 , C30B29/04 , C23C14/35 , C23C14/18 , C23C14/04 , C23C28/00 , A44C17/00 , A44C27/00 , H01L21/285
Abstract: 一种用于钻石定制图案和电极的晶体内部图形化方法,本发明的目的是为了解决现有钻石内部难以定制图案和电极的问题。本发明晶体内部图形化方法如下:一、将选取所要制作于钻石晶体内部的图案转化为黑白模式,作为光刻机输入掩膜图形;二、将钻石衬底置于混酸溶液中超声清洗;三、采用光刻工艺以光刻胶作为掩模版,通过掩模在钻石表面沉积金属膜或非金属膜;四、将带有图案的钻石衬底置于等离子体化学气相沉积系统中,通入生长气体进行外延生长,得到带有定制图案的钻石。本发明利用化学气相沉积工艺再外延一层晶体,将图案覆盖于晶体内部能对图案实现很好的保护作用,满足钻石内部图案的定制需求。
-
公开(公告)号:CN115044973A
公开(公告)日:2022-09-13
申请号:CN202210673216.9
申请日:2022-06-14
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石表面金属阵列外延生长获得局域增强色心发光的方法,本发明是为了解决现有CVD制备金刚石内杂质原子浓度过高,色心转换效率过低的问题。金刚石表面金属阵列外延生长方法:一、清洗;二、采用光刻工艺在金刚石基底上沉积复合金属膜,复合金属膜呈间隔的条纹状;三、将带有复合金属膜的金刚石放入CVD生长舱体内,启动微波发生器,升高气压和功率,使金刚石表面温度达到700~1000℃,通入甲烷和掺杂元素气体,进行外延生长。本发明通过在金刚石表面沉积金属图案,通过CVD原位沉积横向外延生长,工艺流程简单,制备得到了高杂质转换率、高荧光强度色心的样品,从而有效提升色心的自旋相干性能。
-
公开(公告)号:CN114628249A
公开(公告)日:2022-06-14
申请号:CN202210258284.9
申请日:2022-03-16
Applicant: 哈尔滨工业大学
IPC: H01L21/285 , H01L21/324
Abstract: 利用铁催化作用在本征金刚石表面制备欧姆接触的方法,本发明解决半导体器件在金属‑半导体接触处会产生较大的能量损耗等问题。制备欧姆接触的方法:在清洗后的金刚石上匀胶处理,再进行光刻处理,然后在光刻后的金刚石表面磁控溅射沉积Fe层,经过清洗去胶,将表面镀制有铁的金刚石置于石英管中密封,石英管内充有保护气体,然后转移至管式炉中,在800~950℃下退火处理,在本征金刚石表面制备欧姆接触。本发明通过控制退火温度和时间获得最小的接触电阻率,极大提高了导电性能,触点结合性能较好可以长时稳定的工作,由于Fe的存在引线难度降低易于表面形成机械稳定的接触,降低了表面整体石墨化的温度,简化了制备流程。
-
公开(公告)号:CN109183146B
公开(公告)日:2020-08-07
申请号:CN201811213111.5
申请日:2018-10-17
Applicant: 哈尔滨工业大学
Abstract: 一种利用电感耦合等离子体技术消除单晶金刚石籽晶表面缺陷的方法,本发明涉及单晶金刚石籽晶缺陷的消除方法。本发明要解决现有MPCVD生长中籽晶表面由于激光加工和抛光不完善导致的表面缺陷富集,进而影响外延生长金刚石质量的问题。方法:一、单晶金刚石籽晶清洗;二、制备遮挡掩体;三、放置样品;四、关舱;五、抽真空;六、电感耦合等离子体处理。本发明用于一种利用电感耦合等离子体技术消除单晶金刚石籽晶表面缺陷的方法。
-
公开(公告)号:CN108154004B
公开(公告)日:2020-01-14
申请号:CN201711432502.1
申请日:2017-12-26
Applicant: 哈尔滨工业大学
Abstract: 本发明提供基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法,属于薄膜生长理论技术领域,具体涉及过渡层选择方法。本发明首先对选取的若干过渡层材料建立界面模型;然后计算无过渡层存在时的界面性能,判定是否需要过渡层;如需要过渡层,分别计算选取的不同材料作为过渡层时,衬底/过渡层和过渡层/薄膜的界面性能,并根据界面处净电荷量变化量和原子间化学键布居数,对过渡层对衬底和过渡层对薄膜的结合力进行综合评价并排序;根据排序结果选择前2~3种过渡层材料。本发明解决了现有技术确定是否需要过渡层,以及选取何种材料作为过渡层时,存在耗时长、浪费人力物力的问题。本发明可运用于薄膜的制备。
-
公开(公告)号:CN118448467A
公开(公告)日:2024-08-06
申请号:CN202410394378.8
申请日:2024-04-02
Applicant: 哈尔滨工业大学 , 哈工大机器人(中山)无人装备与人工智能研究院
IPC: H01L29/812 , H01L29/47 , H01L21/338
Abstract: 本发明提供一种增强型金刚石基场效应晶体管,包括金刚石衬底、源极、漏极、栅极和低功函数金属耗尽层;金刚石衬底上形成有氢终端表面,氢终端表面为金刚石衬底氢化处理得到,氢终端表面接触空气形成导电沟道,源极和漏极设置于导电沟道的两端;低功函数金属耗尽层设置于导电沟道上,并位于源极和漏极之间;低功函数金属耗尽层的功函数小于4.9eV,厚度为5‑50nm,低功函数金属耗尽层与导电沟道形成肖特基接触;低功函数金属耗尽层材质为金、铝、钛、锆、铂、铪及钇中的至少一种;低功函数金属耗尽层上设置有栅电极,低功函数金属耗尽层通过介质层与栅电极导通。本发明的低功函数金属耗尽层与导电沟道形成肖特基接触,夹断沟道实现常关特性,阈值电压稳定。
-
-
-
-
-
-
-
-
-