基于全局变对比度增强和局部校正的水下图像增强方法

    公开(公告)号:CN114972102A

    公开(公告)日:2022-08-30

    申请号:CN202210625518.9

    申请日:2022-06-02

    Abstract: 本发明提供一种基于全局变对比度增强和局部校正的水下图像增强方法包括:对源图像进行颜色校正处理,采用一种改进的白平衡方法来校正源图像的颜色。对图像进行全局对比度增强处理,采用变对比度和饱和增强模型对源图像进行全局对比度处理以及饱和度增强。对图像进行局部对比度校正处理,采用限制对比度自适应直方图均衡化方法进行局部对比度校正,获取最终的增强图像。本发明利用基于变对比度和饱和增强模型,通过惩罚与颜色校正结果之间的差异来防止输出图像偏离恢复的颜色,利用两个正则化项对图像进行了对比度和饱和度增强,并采用限制性对比度直方图均衡化方法对图像的局部对比度进行调整。

    一种基于颜色校正和细节增强的水下图像增强方法

    公开(公告)号:CN110689587A

    公开(公告)日:2020-01-14

    申请号:CN201910961751.2

    申请日:2019-10-11

    Abstract: 本发明提供一种基于颜色校正和细节增强的水下图像增强方法。本发明所述的水下图像增强方法包含以下两个步骤:颜色校正和细节增强。首先,选取部分清晰的水下图像,参考清晰图像Lab的平均值调整待复原的水下图像Lab值,实现颜色校正。针对颜色校正图像,将RGB空间转换为HSV空间,对H进行直方图均衡化,对S和V进行归一化处理,实现对比度增强。其次,采用拉普拉斯算子处理对比度增强后图像的线性组合,得到边缘映射图,与对比度增强图像和边缘映射图线性加权融合,得到最终增强后的水下图像。本发明所述算法通过调整Lab空间值实现颜色校正,利用拉普拉斯算子实现细节增强,使图像在颜色校正的基础上具有丰富细节信息,提升图像整体视觉效果。

    一种基于高、低频信息融合的水下图像增强方法

    公开(公告)号:CN110503617A

    公开(公告)日:2019-11-26

    申请号:CN201910807224.6

    申请日:2019-08-29

    Abstract: 本发明提供一种基于高、低频信息融合的水下图像增强方法,属于图像处理领域,为解决水下图像的偏色、对比度低、可视性差等问题,本发明方法,包括:基于Retinex模型利用多尺度提取法估计出原图像高频部分照射分量,对获取的照射分量进行对比度受限的自适应直方图均衡化拉伸操作在增强全局对比度的同时突出主特征边缘细节;再将原图像与原图像高频部分照射分量相除来获取原图像低频部分照射分量,采用多尺度局部细节增强算法再对原图像高、低频部分对照射分量进行处理得到各自的细节图;再利用线性加权融合的方法对原图像高、低频部分对照射分量的细节图进行融合;最后对融合后的图像进行颜色校正来获取清晰的水下增强图像。

    一种基于PSPNet细节提取的多聚焦图像融合方法

    公开(公告)号:CN110334779A

    公开(公告)日:2019-10-15

    申请号:CN201910640006.8

    申请日:2019-07-16

    Abstract: 本发明为一种基于PSPNet细节提取的多聚焦图像融合方法,其特征在于,包括以下步骤:首先,采用金字塔场景解析网络PSPNet聚合不同子区域的上下文信息,同时利用金字塔池化模块捕获多尺度下的全局和局部颜色、纹理、形状等特征信息,在此基础上将4种不同尺度的特征图融合为概率图;其次,采用卷积条件随机场ConvCRFs网络提取图像灰度特征,为了优化二值掩膜图,引入自适应阈值判断;为了获取两个源图像高精确聚焦区域,将优化的二值掩膜图作为权重图,并与两个源图像相乘,最后,将两个区域融合以重构清晰的融合图像。本发明通过图像上下文信息,提升全局特征利用率和分割精度,实现多聚焦图像全方位融合。

Patent Agency Ranking