-
公开(公告)号:CN105785687B
公开(公告)日:2018-07-17
申请号:CN201610317846.7
申请日:2016-05-13
Applicant: 吉林大学
Abstract: 一种用于无线局域网的高形状因子的双通带微波光子滤波器,属于微波光子学技术领域。由第一激光器,相位调制器,光隔离器,矢量网络分析仪,高非线性光纤,第二激光器,第一强度调制器,第一双平行强度调制器,第一射频信号源,第一射频功分器,第一射频放大器,第二射频放大器,第二射频功分器,第三激光器,第二强度调制器,第二双平行强度调制器,第二射频信号源,第三射频功分器,第三射频放大器,第四射频放大器,第四射频功分器,第一光耦合器,光环形器和光电探测器组成。通过强度调制器和双平行强度调制器结合产生光频率梳,以光频率梳为泵浦光信号得到高形状因子的通带响应。采用两组光频率梳信号做为泵浦信号,实现对WLAN需要的两个通带的微波信号滤波。
-
公开(公告)号:CN107768521A
公开(公告)日:2018-03-06
申请号:CN201710981712.X
申请日:2017-10-20
Applicant: 吉林大学
CPC classification number: Y02E10/549
Abstract: 一种基于电子俘获诱导空穴注入形成光增益的CH3NH3PbI3钙钛矿光电器件及其制备方法,属于光电探测技术领域。从下至上,依次由具有ITO导电薄膜的玻璃衬底、PEDOT-PSS空穴传输层、CH3NH3PbI3钙钛矿感光薄膜、PCBM电子萃取层、PCBM:F4-TCNQ混合材料电子俘获层、BCP修饰层、Au电极构成。钙钛矿感光层吸光后产生的光生电子流向器件阴极,并被F4-TCNQ提供的深电子陷阱所束缚,导致阴极附近的PCBM能级向下弯曲,并在PCBM中形成空穴势垒尖峰,阴极空穴在较小的反向偏压下可以隧穿通过该势垒尖峰并注入器件,最终形成空穴增益,大幅提高探测器的光电流密度。
-
公开(公告)号:CN105470396B
公开(公告)日:2018-02-23
申请号:CN201610095943.6
申请日:2016-02-23
Applicant: 吉林大学
CPC classification number: Y02E10/549 , Y02P70/521
Abstract: 本发明属于聚合物太阳能电池技术领域,具体涉及一种基于聚芴阴极界面自组装阳极等离子体共振效应的有机太阳能电池及其制备方法,该方法利用具有高导电率的两亲性聚芴材料作为阴极传输层,利用其自组装提高与ITO的界面接触,代替传统TiO2、ZnO等无机传输层,减小界面复合,提高有机太阳能性能;同时,利用真空蒸镀的方法直接在活性层上蒸镀一层金纳米粒子,利用其表面等离子体效应,增加对光的散射,增加光程,进而提高对光的利用率,从而提高器件的性能。这种方法利有效提高有机太阳能电池的效率,为未来纳米压印以及有机太阳能电池的发展有很大借鉴意义。
-
公开(公告)号:CN107064220A
公开(公告)日:2017-08-18
申请号:CN201710058428.5
申请日:2017-01-23
Applicant: 吉林大学
IPC: G01N27/00
Abstract: 一种以超细Au纳米粒子修饰的球形多片层结构ZnO纳米材料为敏感层的乙炔气体传感器及其制备方法,属于气体传感器技术领域。从下至上依次由Al2O3衬底、Pd金属叉指电极、涂覆在Al2O3衬底和Pd金属叉指电极上的敏感层组成,其特征在于:敏感层的材料为超细Au纳米粒子修饰的球形多片层结构ZnO纳米材料,超细Au纳米粒子的粒径为0.5~3nm,通过溶剂热反应生成的、由多孔ZnO片层构成的球形多片层结构ZnO纳米材料的粒径为2~4μm,多孔ZnO片层的厚度为20~50nm,大量超细Au纳米粒子生长在多孔ZnO片层之上,Pd金属插指电极的宽度和间距均为0.15~0.20mm,厚度为100~150nm。本发明制备方法具有制备方法简单、成本低廉、响应恢复速度快、便于大规模生产的特点,对乙炔气体具有优良的检测性能。
-
公开(公告)号:CN105977384A
公开(公告)日:2016-09-28
申请号:CN201610347966.1
申请日:2016-05-24
Applicant: 吉林大学
CPC classification number: Y02E10/549 , H01L51/4266 , B82Y30/00 , B82Y40/00 , H01L51/0003 , H01L51/447 , H01L2251/303
Abstract: 本发明属于聚合物太阳能电池技术领域,具体涉及一种基于等离子体背散射效应提高的聚合物太阳能电池及其制备方法。通过溶液旋涂ZnO纳米颗粒的甲醇分散液来制作背侧的ZnO电子传输层,并利用金(Au)纳米棒对ZnO层进行掺杂。这种方法一方面在电池背部引入Au纳米棒的等离子共振激元,利用其等离子体背散射效应实现活性层对光的多次吸收,提高对光的利用率;另一方面可以有效提高ZnO层对电子的传输和抽取,使电子‑空穴传输更加平衡,防止空间电荷积累。采用醇溶的ZnO纳米颗粒,很容易实现Au纳米棒的可控掺杂,利用溶液旋涂的方式来制备电子传输,也能够有效地简化工艺,降低能耗。利用本发明所述方法能够使器件的光学和电学性能都有很大提高。
-
公开(公告)号:CN105810828A
公开(公告)日:2016-07-27
申请号:CN201610208947.0
申请日:2016-04-06
Applicant: 吉林大学
IPC: H01L51/42 , H01L31/109 , H01L31/11
CPC classification number: Y02E10/549 , H01L51/42 , H01L31/109 , H01L31/11 , H01L51/4213
Abstract: 一种基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法,属于半导体紫外光电探测技术领域。从下至上依次由衬底(石英片、硅片或氟化钙片)、采用溶胶?凝胶法在衬底上制备的纳米TiO2薄膜、采用旋涂法在TiO2薄膜表面制备的PDHF薄膜、在PDHF薄膜表面采用磁控溅射法制备的金属(Au、Pt或Ni)叉指电极组成。在叉指电极间形成PDHF/TiO2/PDHF双异质结构,在暗态时可以有效阻挡电子传输,在紫外光照下又可形成空穴增益,使器件暗电流被明显改善的同时,光电流也有一定提高,性能得到全面提升。
-
公开(公告)号:CN103676399B
公开(公告)日:2016-01-13
申请号:CN201310694669.0
申请日:2013-12-17
Applicant: 吉林大学
IPC: G02F1/365
Abstract: 一种基于高非线性光纤受激布里渊散射效应和二进制相移键控技术实现的高带宽微波光子滤波器,属于微波光子学技术领域。由激光器、耦合器、第一相位调制器、光隔离器、矢量网络分析仪、高非线性光纤、强度调制器、光滤波器、第二相位调制器、脉冲码型发生器、掺铒光纤放大器、光环形器和光电探测器组成;本发明通过二进制相移键控调制技术展宽泵浦信号的带宽,展宽的泵浦信号就会产生展宽的受激布里渊增益谱,从而得到带宽展宽且带宽可调的单通带响应的微波光子滤波器系统。
-
公开(公告)号:CN103236464B
公开(公告)日:2015-07-08
申请号:CN201310140672.8
申请日:2013-04-14
Applicant: 吉林大学
IPC: H01L31/09 , H01L31/0216 , H01L31/032 , H01L31/18
CPC classification number: Y02P70/521
Abstract: 聚乙烯亚胺作为界面修饰层的TiO2紫外探测器及其制备方法,属于半导体光电器件技术领域。探测器由石英衬底、作为光敏层的TiO2薄膜和金属叉指电极组成,其特征在于:TiO2薄膜经羟基化处理,并在其与金属叉指电极之间制备有聚乙烯亚胺界面修饰层。首先,采用溶胶凝胶法制备TiO2薄膜,将制备好的薄膜进行羟基化处理,再将制备好的PEI溶液旋涂在羟基化处理后的TiO2薄膜上,最后采用磁控溅射的方法制备金属叉指电极,从而得到最后的紫外探测器。通过引入PEI作为界面修饰层,可以有效降低势垒的高度,进而改善光电流及响应速度,提高器件的整体性能。
-
公开(公告)号:CN104576789A
公开(公告)日:2015-04-29
申请号:CN201410842704.3
申请日:2014-12-30
Applicant: 吉林大学
IPC: H01L31/0352 , H01L31/09 , H01L31/18
CPC classification number: Y02P70/521 , H01L31/0264 , H01L31/0352 , H01L31/09 , H01L31/18
Abstract: 本发明属于半导体紫外光电探测技术领域,具体涉及一种以纳米氧化石墨烯(GO)作为阻挡层及隧穿层、TiO2/GO复合薄膜为光电转换材料的高性能探测器。器件以石英片做衬底,表面旋涂制备TiO2和GO薄膜,并用磁控溅射制备金电极。利用光刻技术,将GO层制备成与电极具有相同形状的叉指结构,可以有效降低表面漏电流。器件工作时,GO层在黑暗中起到阻挡层作用,提高势垒阻止电子传输,有效降低器件暗电流;在310nm紫外光照射下,外加偏压使GO层发生隧穿效应,成为光生载流子的传导阶梯,促进光生电流传递,有效提高器件光电流。
-
公开(公告)号:CN103268897A
公开(公告)日:2013-08-28
申请号:CN201310210273.4
申请日:2013-05-30
Applicant: 吉林大学
IPC: H01L31/101 , H01L31/0264 , H01L31/18
CPC classification number: Y02P70/521
Abstract: 具有钝化处理的宽禁带氧化物半导体薄膜层的紫外探测器及制备方法,属于半导体光电器件技术领域。探测器依次由衬底、经(NH4)2S溶液钝化处理的光敏感宽禁带氧化物半导体薄膜层、金属叉指电极组成。其特征在于:首先采用溶胶凝胶法制备TiO2等薄膜层,然后将制备好的薄膜进行硫化铵溶液钝化处理,最后采用光刻、磁控溅射、刻蚀等工艺制备金属叉指电极,从而得到紫外探测器。经过硫化铵溶液钝化处理的TiO2等薄膜表面态密度减小,溅射金属叉指电极后TiO2与金属接触的肖特基势垒降低,改善了光电流和响应时间;另一方面表面电荷的减少抑制了表面漏电流,改善了暗电流,最终提高了器件的整体性能。
-
-
-
-
-
-
-
-
-