-
公开(公告)号:CN104931260A
公开(公告)日:2015-09-23
申请号:CN201510386838.3
申请日:2015-07-03
Applicant: 哈尔滨工业大学
IPC: G01M13/02
Abstract: 一种高速轻薄化齿轮专用电涡流位移传感器定位夹持机构,它涉及一种电涡流位移传感器定位夹持机构。本发明为了解决现有的电涡流位移传感器的定位安装机构存在易破坏待测件、不适用于回转体部件圆周方向上不同角度传感器快速定位及无法满足临时、快速、高精度的反复安装和不破坏被测部件的问题。本发明的进给机构安装在燕尾导轨上,磁性表座通过磁力固定于试验台或被测装置机架上,导轨滑块可滑动安装在燕尾导轨上,且导轨滑块的一端与进给机构连接,旋转夹具高度调节立柱竖直安装在导轨滑块上,电涡流位移传感器旋转夹具可滑动安装在旋转夹具高度调节立柱上。本发明用于高速轻薄化齿轮的齿轮振动测试。
-
公开(公告)号:CN101575220B
公开(公告)日:2011-10-05
申请号:CN200910072231.2
申请日:2009-06-09
Applicant: 哈尔滨工业大学
Abstract: 陶瓷球表面转移润滑膜制备装置及方法,它涉及一种陶瓷球表面制备润滑涂层的装置及方法。本发明为解决现有方法制备的陶瓷球所获得的自润滑涂层结合力弱和涂层不均匀的问题。装置:第一弹簧上端与加载总成连接,下端与上磨盘支座连接,上磨盘装在上磨盘支座中,下磨盘装在下磨盘支座中,下磨盘支座与转速控制总成连接,下磨盘通过四个第二定位螺栓固定在下磨盘支座中,保持架装在下磨盘上且其上的若干个圆孔与V形环槽正对。方法:陶瓷球在V形环槽中自由滚动且与上磨盘和下磨盘滚滑、碾磨,将复合材料研磨到陶瓷球表面。本发明使陶瓷球表面获得均匀的自润滑涂层。陶瓷球在下磨盘和上磨盘之间滚滑研磨且在陶瓷球表面形成厚度均匀的润滑薄膜。
-
公开(公告)号:CN114543716B
公开(公告)日:2025-01-24
申请号:CN202210258307.6
申请日:2022-03-16
Abstract: 一种基于超声波反射系数实部的油膜厚度测量方法,属于润滑状态超声监测领域。本发明针对现有超声波反射系数幅值方法的油膜厚度测量上限问题。首先使摩擦基体a和摩擦基体b之间的间隙为空气层,采集摩擦基体a与空气层界面的超声波反射信号作为参考信号;然后在摩擦基体a和摩擦基体b之间添加润滑油形成油膜层,采集摩擦基体a与油膜层界面的超声波反射信号作为油膜反射信号;对参考信号和油膜反射信号分别进行傅里叶变换,计算得到油膜层反射系数;提取反射系数的实部信息,得到反射系数实部;根据反射系数实部和超声波信号中心频率计算获得油膜层厚度。本发明方法可将油膜厚度测量上限提高数十微米,并实现更高的油膜厚度测量精度。
-
公开(公告)号:CN119334294A
公开(公告)日:2025-01-21
申请号:CN202411330310.X
申请日:2024-09-23
Abstract: 一种球盘式拖动力测试试验盘接触轨道半径标定方法,步骤包括:测量确定试验用球的半径rb;获取滑滚比s=0时球的转速nbo;开启润滑系统使润滑油喷向球盘接触区进行润滑,然后进行伺服加载,使球和盘发生接触,接触应力可以是球盘试验机接触力设计范围的任意值;获取当出现由载荷传感器2受力跳变到载荷传感器1受力时,此时球驱动电机转速为临界转速nb′;当出现由载荷传感器1受力跳变到载荷传感器2受力时,此时球驱动电机转速为临界转速nb″;取两个临界转速nb′和nb″的平均值为球盘滚动接触时球的转速#imgabs0##imgabs1#盘的接触轨道半径为:#imgabs2#
-
公开(公告)号:CN118961570A
公开(公告)日:2024-11-15
申请号:CN202411270600.X
申请日:2024-09-11
Applicant: 哈尔滨工业大学
IPC: G01N19/02
Abstract: 一种高瞬间加速度与高应力工况摩擦副静动摩擦性能测试装置,它涉及摩擦副静动摩擦性能测试技术领域。本发明解决了现有的摩擦副静动摩擦性能测试装置存在无法同时满足高应力、高瞬态加速度工况需求的用于测量静动转化过程中的摩擦系数的问题。本发明的力加载组件本体的力加载输出端与二维力传感器上端连接,二维力传感器下端与球夹具组件连接,球夹具组件底部安装有试验球,气动旋转组件设置在球夹具组件下方,气动旋转组件的固定部分与装置底板连接,气动旋转组件的活动部分安装有试验盘,气动旋转组件的进、出气口分别通过气管与供气系统的供、回气口连接。本发明用于测量不同摩擦副在高加速度、高应力工况下的静动摩擦转化过程中的摩擦系数。
-
公开(公告)号:CN117874964B
公开(公告)日:2024-05-03
申请号:CN202410270573.X
申请日:2024-03-11
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F119/14
Abstract: 一种球轴承保持架兜孔粗糙表面形貌演化动态分析方法,属于球轴承保持架表面形貌分析技术领域。本发明针对球轴承运行过程中,球与保持架兜孔的接触位置实时变化,将整个兜孔表面作为求解域影响形貌演变规律预测的准确性的问题。包括获得球与保持架兜孔的位置及表面初始形貌;计算球与保持架兜孔的位置向量及其相互作用的弹性变形;并计算接触半长和接触半宽,从而确定自适应求解域;再基于初始压力矩阵确定压力步更新步长,再计算各节点压力值得到修正后压力矩阵p以及真实接触区和修正接触区;再计算各节点的磨损高度,并更新球与保持架兜孔的表面形貌;再进行下一次表面形貌更新的计算,直到结束。本发明用于保持架兜孔表面形貌演化分析。
-
公开(公告)号:CN117874964A
公开(公告)日:2024-04-12
申请号:CN202410270573.X
申请日:2024-03-11
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F119/14
Abstract: 一种球轴承保持架兜孔粗糙表面形貌演化动态分析方法,属于球轴承保持架表面形貌分析技术领域。本发明针对球轴承运行过程中,球与保持架兜孔的接触位置实时变化,将整个兜孔表面作为求解域影响形貌演变规律预测的准确性的问题。包括获得球与保持架兜孔的位置及表面初始形貌;计算球与保持架兜孔的位置向量及其相互作用的弹性变形;并计算接触半长和接触半宽,从而确定自适应求解域;再基于初始压力矩阵确定压力步更新步长,再计算各节点压力值得到修正后压力矩阵p以及真实接触区和修正接触区;再计算各节点的磨损高度,并更新球与保持架兜孔的表面形貌;再进行下一次表面形貌更新的计算,直到结束。本发明用于保持架兜孔表面形貌演化分析。
-
公开(公告)号:CN116933510A
公开(公告)日:2023-10-24
申请号:CN202310838640.9
申请日:2023-07-10
Applicant: 哈尔滨工业大学
IPC: G06F30/20 , G06T17/20 , G06F119/02 , G06F111/04
Abstract: 一种轴承打滑蹭伤失效行为预测分析方法,它属于轴承损伤失效行为分析及预测领域。本发明解决了现有轴承打滑蹭伤失效行为预测方法的通用性差的问题。本发明建立了从工况诱导打滑到表界面打滑蹭伤的关联路径,系统阐明工况、结构、润滑、材料和表面状态的耦合作用机制,基于轴承内部润滑状态和滑滚摩擦界面瞬时温升,形成主轴承表面不同打滑蹭伤程度的定量预测方法,且本发明方法在任何条件下均可实现,具有极强的通用性本发明方法可以应用于轴承打滑蹭伤失效行为预测。
-
公开(公告)号:CN112948995B
公开(公告)日:2022-09-30
申请号:CN202110165253.4
申请日:2021-02-06
Applicant: 天津职业技术师范大学(中国职业培训指导教师进修中心) , 哈尔滨工业大学
IPC: G06F30/17 , G06F30/20 , G06F119/14
Abstract: 一种考虑固体润滑涂层影响的球轴承力学行为分析方法。该方法包括:(1)计算一系列载荷点下固体润滑轴承的钢球与内外圈的接触变形;(2)应用最小二乘法拟合获得固体润滑球轴承轴承内外套圈与钢球的接触载荷与接触变形幂函数关系式;(3)基于轴承内外套圈与钢球的接触载荷与接触变形的关系式建立固体润滑球轴承力学分析模型;(4)采用Newton‑Raphson法求解模型。本方法克服了基于Hertz接触理论的现有球轴承力学行为分析模型无法考虑固体润滑涂层影响的局限性,提高了固体润滑滚动轴承内部接触力载、接触刚度等力学行为的计算精度与可信度,对准确评价固体润滑涂层对轴承力学特性的影响具有重要意义。
-
公开(公告)号:CN110954325B
公开(公告)日:2022-09-06
申请号:CN201911340025.5
申请日:2019-12-23
IPC: G01M13/04
Abstract: 一种冷热腔短距隔离的重载超高温轴承性能测试装置及方法,它包括驱动模块、扭矩传感器、支撑轴承、径向加载装置、被试轴承、支撑主轴、轴向加载装置和加热室;加热室布置在底座上;支撑主轴通过布置在加热室外部的支撑轴承支撑,驱动模块的输出端连接扭矩传感器,扭矩传感器与布置于加热室外部的支撑主轴的另一端连接,加热室上安装有用于加载被试轴承的轴向加载装置和径向加载装置。测试方法步骤:一、安装需要的被试轴承;二、准备测试;三、加热室升温;四、轴向和径向载荷测试。本发明结构紧凑,工作可靠。
-
-
-
-
-
-
-
-
-