原位包覆有机物的纳米铜粉及其制备方法

    公开(公告)号:CN108031839B

    公开(公告)日:2020-05-15

    申请号:CN201810014435.X

    申请日:2018-01-08

    Abstract: 本发明提供一种原位包覆有机物的纳米铜粉及其制备方法,所述制备方法是将铜盐加入到含有分散剂和任选含有水溶性大分子的水溶液中,溶解并混合均匀,加入碱溶液调节pH至10±0.5,然后加入还原剂,升温至30‑100℃反应30‑240min后,再于超声条件下反应10‑60min,冷却,离心,分离沉淀,干燥后即得原位包覆有机物的纳米铜粉。采用本发明方法制得的纳米铜粉粒径均一,分散性好、稳定性好,铜颗粒表面包覆的分散剂能够有效地防止其发生氧化。该制备方法简单,设备要求低,经济效益大,应用前景广阔。

    原位包覆有机物的纳米铜粉及其制备方法

    公开(公告)号:CN108031839A

    公开(公告)日:2018-05-15

    申请号:CN201810014435.X

    申请日:2018-01-08

    Abstract: 本发明提供一种原位包覆有机物的纳米铜粉及其制备方法,所述制备方法是将铜盐加入到含有分散剂和任选含有水溶性大分子的水溶液中,溶解并混合均匀,加入碱溶液调节pH至10±0.5,然后加入还原剂,升温至30‑100℃反应30‑240min后,再于超声条件下反应10‑60min,冷却,离心,分离沉淀,干燥后即得原位包覆有机物的纳米铜粉。采用本发明方法制得的纳米铜粉粒径均一,分散性好、稳定性好,铜颗粒表面包覆的分散剂能够有效地防止其发生氧化。该制备方法简单,设备要求低,经济效益大,应用前景广阔。

    一种从废旧印刷线路板中提取金属铜的方法

    公开(公告)号:CN105132691A

    公开(公告)日:2015-12-09

    申请号:CN201510610773.6

    申请日:2015-09-23

    CPC classification number: Y02P10/212

    Abstract: 本发明涉及一种从废旧印刷线路板中提取金属铜的方法,它包括以下步骤:(a)将废旧印刷线路板的表面层从其基板上分离;(b)以所述表面层为阳极、钛板为阴极、硫酸铜溶液为电解液,连接直流电源后形成断路的电解池;(c)调节阳极和阴极的间距为2~12cm、直流电源电压为1~5V、硫酸铜溶液的温度为25~50℃,接通电路电解0.5~5h,收集阴极上得到的铜即可。以表面层为阳极、钛板为阴极、硫酸铜溶液为电解液形成电解池,并精确控制电解参数,能够在阴极上得到高纯度额铜,可直接用于工业生产;而且使用的硫酸铜溶液可以循环使用,不会对环境造成二次污染,由于废旧电路板无需进行破碎,不仅简化了电解工艺,还使非金属材料如玻璃纤维的性质没有遭到损害。

    一种从废旧印刷线路板中提取金属铜的方法

    公开(公告)号:CN105132691B

    公开(公告)日:2018-02-13

    申请号:CN201510610773.6

    申请日:2015-09-23

    CPC classification number: Y02P10/212

    Abstract: 本发明涉及一种从废旧印刷线路板中提取金属铜的方法,它包括以下步骤:(a)将废旧印刷线路板的表面层从其基板上分离;(b)以所述表面层为阳极、钛板为阴极、硫酸铜溶液为电解液,连接直流电源后形成断路的电解池;(c)调节阳极和阴极的间距为2~12cm、直流电源电压为1~5V、硫酸铜溶液的温度为25~50℃,接通电路电解0.5~5h,收集阴极上得到的铜即可。以表面层为阳极、钛板为阴极、硫酸铜溶液为电解液形成电解池,并精确控制电解参数,能够在阴极上得到高纯度额铜,可直接用于工业生产;而且使用的硫酸铜溶液可以循环使用,不会对环境造成二次污染,由于废旧电路板无需进行破碎,不仅简化了电解工艺,还使非金属材料如玻璃纤维的性质没有遭到损害。

    一种印刷线路板中玻璃纤维布和金属层的分离方法

    公开(公告)号:CN105149322A

    公开(公告)日:2015-12-16

    申请号:CN201510612653.X

    申请日:2015-09-23

    CPC classification number: Y02W30/822 B09B3/00

    Abstract: 本发明涉及一种印刷线路板中玻璃纤维布和金属层的分离方法,它包括以下步骤:(a)取废弃线路板分别进行示差扫描量热法和热重分析测试得到对应的分析曲线,确定裂解温度区域;(b)将管式炉升温至所述裂解温度区域内的任一温度,连续通入惰性气体,随后将试样推舟送入有效加热温区进行保温,直至金属层发生翘曲;(c)在所述管式炉出口处连接收集容器,取热解过程中释放的气体进行气相色谱分析,进行回收处理;(d)剥离玻璃纤维布和金属层即可。此温度处于分解树脂效率最高的温度区间,节省能源,经济环保,仅造成中间粘结树脂的分解而不会破坏玻璃纤维布和金属层,线路板无需进行破碎,简化了分离工艺。

Patent Agency Ranking