-
公开(公告)号:CN116639147A
公开(公告)日:2023-08-25
申请号:CN202310403457.6
申请日:2023-04-14
Applicant: 东北电力大学
Abstract: 本发明公开了一种驾驶疲劳缓解方法、装置、设备及存储介质,所述方法通过在检测到疲劳缓解功能开启时,获取驾驶员的个人信息,并根据所述个人信息定制驾驶认知任务;根据所述驾驶认知任务生成驾驶测试问题,将所述驾驶测试问题在当前车辆的显示装置上显示并语音播报;接收到所述驾驶员的反馈信息后,根据所述反馈信息确定所述驾驶员的疲劳程度,根据所述疲劳程度确定电刺激策略,根据所述电刺激策略对所述驾驶员进行疲劳提醒,能够在不影响驾驶员正常操作的情况下对驾驶员进行高效的驾驶疲劳缓解,适用性强,易于实现,缓解效果更佳,提高了驾驶安全性,减少了因驾驶疲劳导致的交通事故,提高了驾驶疲劳缓解的速度和效率。
-
公开(公告)号:CN116439728A
公开(公告)日:2023-07-18
申请号:CN202310403470.1
申请日:2023-04-14
Applicant: 东北电力大学
Abstract: 本发明公开了一种因效性脑网络驾驶疲劳分析方法、装置、设备及存储介质,所述方法通过对预处理后的待分解脑电信号,利用小波包算法分解待分解脑电信号,根据分解后的脑电信号按照预设重构频段重构,获得重构脑电信号;获取重构脑电信号的复杂度特征和MVAR阶数,基于DEKF计算MVAR阶数对应的MVAR系数,采用gOPDC对MVAR系数进行计算,获得节点因果值矩阵,根据预设矩阵阈值对节点因果值矩阵进行二值化处理,获得因果邻接矩阵;根据因果邻接矩阵和复杂度特征构建因效性脑网络,对因效性脑网络的特征参数进行分析,获得驾驶员疲劳分析结果,能够提高驾驶员疲劳程度评判的准确性,减少驾驶疲劳的安全隐患。
-
公开(公告)号:CN114548168A
公开(公告)日:2022-05-27
申请号:CN202210155239.0
申请日:2022-02-21
Applicant: 东北电力大学
Abstract: 本发明公开了一种多类运动想象脑电信号融合特征提取及分类方法,该方法分为三步,第一步将采集到的各导联脑电信号进行预处理;第二步脑电信号融合特征提取;第三步,基于融合特征向量,采用麻雀寻优算法对多分类相关向量机进行参数寻优,构造最优分类器,并利用构造的最优分类器最终实现运动想像分类识别。本发明的方法弥补了传统特征提取方法只利用了时幅信息而忽略了相位信息的缺陷,提高了多类运动想象脑电信号的识别准确率。
-
-