一种毫米厚度石英玻璃的高质量切割方法

    公开(公告)号:CN115178892A

    公开(公告)日:2022-10-14

    申请号:CN202210853959.4

    申请日:2022-07-13

    Applicant: 中南大学

    Abstract: 本发明提出一种毫米厚度石英玻璃的高质量切割方法,充分利用飞秒激光可突破衍射极限的指定位置处极小范围进行高精度加工,并具有空间分辨率高等特点,通过控制激光通量和聚焦条件,主要为飞秒激光进给方式、激光功率、扫描速度以及单次进给量,应用优选的工艺参数的飞秒激光对石英玻璃进行改性加工,再结合超声波辅助HF化学溶液对改性后样品进行选择性刻蚀的方法,实现对毫米厚度石英玻璃的高质量切割。该方法适用于厚度≤1000μm的石英玻璃的切割,使得加工后样品的陡直度可达89°以上,接近理想的角度,边缘崩边尺寸小于2μm,断面粗糙度小于0.5μm,该切割方法具有一定的适用性、可重复性,且能保证加工质量的一致性。

    一种光纤布拉格光栅位置检测装置及其测量方法

    公开(公告)号:CN112964181B

    公开(公告)日:2022-03-15

    申请号:CN202110330239.5

    申请日:2021-03-29

    Applicant: 中南大学

    Abstract: 本发明公开了一种光纤布拉格光栅位置检测装置及其测量方法,所述方法包括基座、光学器件和光纤光栅解调系统。所述光学器件包括平凸柱面透镜和光纤布拉格光栅。所述基座包括:固定平凸柱面透镜的镜架,固定光纤的光纤夹具,调制控制光纤和平凸柱面透镜位置和角度的三维运动平台,连接镜架、光纤夹具和三维运动平台的基板。所述光纤光栅解调系统包括:光纤光栅解调仪及信号光源。测量方法是利用平凸柱面透镜将激光光束聚焦到光纤布拉格光栅上,激光辐照会改变布拉格光栅的有效折射率,使光栅发生相移,从而改变布拉格光栅的反射谱,通过观测光栅反射谱的变化可以得到光栅布拉格光纤的准确位置及长度。该测量装置结构新颖,以自传感的方式实现对光纤布拉格光栅自身位置的检测,具有体积小巧、测量精度高等优点。

    一种光纤温度传感器
    4.
    发明公开

    公开(公告)号:CN113607304A

    公开(公告)日:2021-11-05

    申请号:CN202110329975.9

    申请日:2021-03-29

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于荧光强度检测的光纤温度传感器,包括光纤泵浦光源、单模光纤、光纤耦合器、光电探测器和特种掺杂光纤。其中泵浦光源用于产生激发光,并通过光纤耦合器和单模光纤将发射的泵浦激光传输至特种掺杂光纤端;特种光纤作为传感端,在泵浦激光激发下,产生更长波段的荧光信号;该荧光信号沿透射方向可直接被光电探测器接收,也可沿反向传输,经由单模光纤和光纤耦合器,被光电探测器接收,实现荧光信号的强度检测。特种光纤的受激辐射光强度随环境温度升高而减弱,基于此原理实现了一种光纤温度传感器的制作。该器件可以实现高温温度测量,且系统温度响应快,在爆炸环境下的瞬态温度检测以及消防工程中的极端环境温度监测等领域有广阔的应用前景。

    一种光纤温度传感器及其测量方法

    公开(公告)号:CN113340456A

    公开(公告)日:2021-09-03

    申请号:CN202110798132.3

    申请日:2021-07-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种光纤温度传感器及其测量方法,包括基座和光纤;所述基座包含金属底板、光纤夹具和PDMS;光纤夹具安装在金属底板两侧。金属底板中间的圆孔内充满固化的PDMS。所述光纤是由输入端单模光纤,无芯光纤,光子晶体光纤和输出端单模光纤组成的SNPS结构马赫增德尔干涉仪。光纤拉直后安装在光纤夹具上,并保证无芯光纤和光子晶体光纤的熔接点在金属底板的圆孔中心处并与PDMS接触上。被测物体的温度升高时会通过金属底板传递到PDMS,PDMS受热膨胀将光纤顶弯,SNPS结构的马赫增德尔干涉仪具有极高的弯曲灵敏度,通过监测SNPS结构的光谱变化可以解调出温度的变化。这种光纤温度传感器具灵敏度高、不受电磁干扰、无需外接供电等优点。

    一种回转壳体谐振子定位对准系统和方法

    公开(公告)号:CN114187361B

    公开(公告)日:2024-11-19

    申请号:CN202111530383.X

    申请日:2021-12-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种针对回转壳体谐振子的定位对准系统,包括视觉传感器、图像处理模块、高精度运动平台、可微调装夹装置。所述视觉传感器主要由三个CCD相机组成;所述图像处理模块实现对谐振子图像的预处理、目标基准特征提取等功能;高精度运动平台包括三个互相空间垂直的直线运动平台,一个旋转运动平台,组成四自由度运动平台;可微调装夹装置可实现空间两自由度的旋转角度微调,平面二维的平移距离微调。由以上功能模块组成的定位对准系统解决了回转体壳体谐振子的定位对准问题。本发明也公开了一种基于视觉伺服的对谐振子进行定位对准的方法,在上述系统的基础上,通过控制运动平台与CCD相机协同工作,实现对谐振子相对基准特征偏离值的求解,反馈给可微调装夹装置进行位姿校正,实现快速、便捷、精确地实现对回转壳体谐振子的定位对准。

    一种轴对称非等厚壳体结构及其制备方法

    公开(公告)号:CN118129724A

    公开(公告)日:2024-06-04

    申请号:CN202410324241.5

    申请日:2024-03-21

    Applicant: 中南大学

    Abstract: 本发明公开了一种轴对称非等厚壳体谐振结构及其制备方法,该轴对称非等厚壳体谐振结构包括一端开口、另一端封闭的半球状壳体,所述半球状壳体过中心轴线的截面厚度沿壳体开口端至封闭端非恒定,且变化起点和终点可以在开口端至封闭端的任意位置。制备方法包括以下步骤:往旋转的成型模具中注入纳米二氧化硅粉末制备的浆料,浆料在离心力的驱动下均匀地注满成型模具,最终沉积在成型模具空腔的腔壁上,得到成型模具对应的轴对称非等厚壳体谐振结构,干燥成型后通过高温烧结制备出致密熔融石英材质的轴对称非等厚壳体谐振结构。本发明的轴对称非等厚壳体谐振结构能够显著提升工作稳定性和环境适应性,而且该谐振结构通过离心注模工艺制备,轴对称性易于保证,大大降低了谐振结构对加工工艺的要求,不需要额外的机加工工序,显著降低了谐振结构的制作成本,加工效率得到明显提升,同时该加工设备适用于多种尺寸范围和材料的谐振结构。

    一种硅陀螺增加质量式调谐方法

    公开(公告)号:CN113532406B

    公开(公告)日:2022-11-22

    申请号:CN202110798179.X

    申请日:2021-07-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种硅陀螺增加质量式调谐方法,该方法首先将硅陀螺放置于合适压强的气体氛围中,并利用硅陀螺的频率裂解测试结果确定其增加的质量和增加质量的位置。然后通过视觉系统和运动平台将硅陀螺移动到合适的加工区域。最后利用超快激光诱导硅陀螺目标位置与气体元素反应,实现硅陀螺局部的质量增加,降低其频率裂解。通过改变气体浓度、激光诱导位置、激光功率和激光诱导时间等,可精密控制增加的质量,实现硅陀螺的精密调谐。增加质量式调谐在降低硅陀螺频率裂解的同时最大程度地保持了谐振子的连续性。该方法具有调谐精密、损伤小、增加质量可控和加工对象广的特点,可用于硅陀螺的精密调谐,具有广阔的应用前景。

    马赫曾德尔干涉仪光子晶体光纤折射率传感器及制备方法

    公开(公告)号:CN114279965A

    公开(公告)日:2022-04-05

    申请号:CN202111655293.3

    申请日:2021-12-30

    Abstract: 本发明提供了一种马赫曾德尔干涉仪光子晶体光纤折射率传感器,包括依次耦合的第一单模光纤、细芯光纤、光子晶体光纤以及第二单模光纤,相邻两段光纤通过熔接方式耦合,传输光经过第一单模光纤进入细芯光纤以及光子晶体光纤,最后从第二单模光纤射出。本发明利用直接熔接的方式,将一段细芯光纤和一段光子晶体光纤熔接在两段单模光纤之间,形成复合型MZI器件,可以通过细芯光纤和光子晶体光纤的长度来获得高质量的干涉光谱,操作简便,加工效率高,成本低,适用于不同类型的光纤折射率器件,本方案相比于传统PCF器件具有更高的折射率灵敏度及更高的条纹分辨率,可用于生物医药和食品等领域。

    一种光纤液位检测装置及其测量方法

    公开(公告)号:CN114046856A

    公开(公告)日:2022-02-15

    申请号:CN202111302833.X

    申请日:2021-11-05

    Applicant: 中南大学

    Abstract: 本发明公开了一种光纤液位检测装置及其测量方法,所述方法包括光纤、光功率计、信号光源、光纤耦合器、运动控制系统。所述运动控制系统包括:运动平台、固定光纤的夹具、计算机及运动控制程序;测量方法是利用光纤切割端面反射功率在不同介质中的大小不同,在不同介质截面反射功率骤变明显,通过观察功率骤变点可以精确测量液面位置。该测量装置具有结构简单,抗干扰,测量精度高等优点。

Patent Agency Ranking