-
公开(公告)号:CN111859979A
公开(公告)日:2020-10-30
申请号:CN202010549940.1
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/953 , G06N3/04
Abstract: 本申请涉及一种讽刺文本协同识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;提取待处理文本的语义特征信息和主题特征信息,语义特征信息用于表征待处理文本与讽刺类型的关联关系,主题特征信息用于表征待处理文本体现的讽刺主题;根据第一神经网络模型对语义特征信息和主题特征信息的识别结果确定待处理文本的文本类型,并确定待处理文本的主题标签。本申请利用表征语义情感的特征和表征讽刺主题的特征对待处理文本进行协同识别,既确定是否带有讽刺含义,在具备讽刺含义的情况下还同时识别出体现讽刺的主题,实现有主题区分度的文本语义表示,有效提高了讽刺识别的准确率和解释性。
-
公开(公告)号:CN110083699A
公开(公告)日:2019-08-02
申请号:CN201910202638.6
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。
-
公开(公告)号:CN115358233A
公开(公告)日:2022-11-18
申请号:CN202210798992.1
申请日:2022-07-06
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06N20/00
Abstract: 本发明提供一种语言命名实体识别方法、语言识别装置、电子设备及介质,该方法包括:获取目标语言对应的待标注数据集;根据所述待标注数据集,基于语言预测模型,得到目标预测数据;根据预设的已标注数据集及所述目标预测数据,得到目标数据集;根据所述目标数据集,基于语言识别模型,得到所述目标语言对应的实体识别结果。该方法用以解决现有技术中由于一些目标语言及这些目标语言对应的样本数据集具有一定的局限性,易导致电子设备无法对上述这些目标语言进行准确识别的缺陷,实现电子设备可对这些目标语言进行准确识别,得到准确性较高的实体识别结果。
-
公开(公告)号:CN111859980A
公开(公告)日:2020-10-30
申请号:CN202010549951.X
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/9536 , G06N3/04 , G06N3/08
Abstract: 本申请涉及一种讽刺类型的文本识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;采用多种方式提取待处理文本的目标特征信息,目标特征信息为从特征集合中选择出来的多个特征信息的加权和表示;根据第一神经网络模型对目标特征信息的识别结果确定待处理文本的文本类型,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据是否为目标类型。本申请从多个维度捕获词间关联特征,并从讽刺文本的情感倾向转换出发,挖掘词语间的冲突性,进而充分体现句子中地所蕴含的讽刺含义,最终准确、合理地识别讽刺文本。
-
公开(公告)号:CN111859980B
公开(公告)日:2024-04-09
申请号:CN202010549951.X
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/9536 , G06N3/0442 , G06N3/0464 , G06N3/084
Abstract: 本申请涉及一种讽刺类型的文本识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;采用多种方式提取待处理文本的目标特征信息,目标特征信息为从特征集合中选择出来的多个特征信息的加权和表示;根据第一神经网络模型对目标特征信息的识别结果确定待处理文本的文本类型,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据是否为目标类型。本申请从多个维度捕获词间关联特征,并从讽刺文本的情感倾向转换出发,挖掘词语间的冲突性,进而充分体现句子中地所蕴含的讽刺含义,最终准确、合理地识别讽刺文本。
-
公开(公告)号:CN110083699B
公开(公告)日:2021-01-12
申请号:CN201910202638.6
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。
-
公开(公告)号:CN115345181A
公开(公告)日:2022-11-15
申请号:CN202210786892.7
申请日:2022-07-04
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/58 , G06F16/36 , G06F40/211 , G06F40/295 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种神经机器翻译模型的训练方法、翻译方法及装置,所述训练方法包括:构建神经机器翻译模型;将双语平行句对中的源语言句子和目标语言句子,以及知识图谱中每个三元组中的头实体和尾实体进行细粒度切分,得到标准源语言句子序列、标准目标语言句子序列以及知识图谱中每个三元组中的标准头实体‑关系序列和标准尾实体序列;将其输入编解码模块中预测得到目标语言句子序列以及尾实体序列;基于标准目标语言句子序列和预测的目标语言句子序列之间的交叉熵,以及知识图谱中每个三元组中的标准尾实体序列与预测的尾实体序列之间的交叉熵,共同训练该模型。本发明能够有效融合细粒度知识推断,提升神经机器翻译对于实体的翻译质量。
-
公开(公告)号:CN118657148A
公开(公告)日:2024-09-17
申请号:CN202410681340.9
申请日:2024-05-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06F40/205 , G06F40/126 , G06F16/33
Abstract: 本发明提供一种实体关系抽取方法、装置、电子设备以及存储介质,涉及人工智能技术领域。实体关系抽取方法包括:利用注意力模型,处理待处理文本以及目标实体关系词,得到实体关系判别信息;利用实体关系判别信息,得到目标第一命名实体与候选第二命名实体在待处理文本中的第一关联度、目标第一命名实体与目标实体关系词在待处理文本中的第二关联度,以及候选第二命名实体与目标实体关系词在待处理文本中的第三关联度;响应于第一关联度、第二关联度以及第三关联度均大于各自对应的预设阈值,从待处理文本中抽取出目标第一命名实体和候选第二命名实体之间的待抽取的实体关系。本发明可以准确、高效地执行实体关系抽取任务。
-
公开(公告)号:CN118626223A
公开(公告)日:2024-09-10
申请号:CN202410705471.6
申请日:2024-06-03
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于自动化驱动工具的社交网络数据采集方法,包括:获取输入的调度任务,将调度任务转化为结构化数据,并持久化到任务存储器;基于预设的优先级策略自动调整调度任务的执行顺序和执行频率;请求获取调度任务,根据与分配的调度任务匹配的预先配置的模板,采用自动化驱动工具于社交平台上自动采集分配的调度任务所需的数据;收集分配的调度任务的状态变化,待分配的调度任务完成后将采集到的数据上报,并修改分配的调度任务的下次执行时间。本发明可通过自动化驱动技术采集获取社交网络平台数据,可完成系统内持续任务的分类定级,根据各任务执行主体的状态动态分配任务以及资源回收。
-
公开(公告)号:CN116467454A
公开(公告)日:2023-07-21
申请号:CN202310504562.9
申请日:2023-05-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/9537 , G06F40/194
Abstract: 本发明公开了一种综合多模型的网络热点话题传播模式分类方法,其包括以下步骤:步骤一、收集平台t时间段内的目标热点话题的帖子数据;步骤二、基于帖子数据计算帖子基本维度信息;步骤三、绘制关于时间‑帖子数量的话题热度变化曲线;步骤四、提取目标热点话题的竞争性话题,并计算竞争性话题数量;步骤五、基于帖子数据,量化目标热点话题的传播角色的信息;步骤六、通过漏斗模型和网络模型,进行目标热点话题的传播模式识别分类。本发明构建了一种普适的网络热点话题传播模式识别分类方法,能够有效地判断话题的传播类型,即使在话题部分维度数据缺失的情况下仍然具有较好的分类结果。
-
-
-
-
-
-
-
-
-