基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699A

    公开(公告)日:2019-08-02

    申请号:CN201910202638.6

    申请日:2019-03-18

    Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。

    语言命名实体识别方法、语言识别装置、电子设备及介质

    公开(公告)号:CN115358233A

    公开(公告)日:2022-11-18

    申请号:CN202210798992.1

    申请日:2022-07-06

    Abstract: 本发明提供一种语言命名实体识别方法、语言识别装置、电子设备及介质,该方法包括:获取目标语言对应的待标注数据集;根据所述待标注数据集,基于语言预测模型,得到目标预测数据;根据预设的已标注数据集及所述目标预测数据,得到目标数据集;根据所述目标数据集,基于语言识别模型,得到所述目标语言对应的实体识别结果。该方法用以解决现有技术中由于一些目标语言及这些目标语言对应的样本数据集具有一定的局限性,易导致电子设备无法对上述这些目标语言进行准确识别的缺陷,实现电子设备可对这些目标语言进行准确识别,得到准确性较高的实体识别结果。

    基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699B

    公开(公告)日:2021-01-12

    申请号:CN201910202638.6

    申请日:2019-03-18

    Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。

    神经机器翻译模型的训练方法、翻译方法及装置

    公开(公告)号:CN115345181A

    公开(公告)日:2022-11-15

    申请号:CN202210786892.7

    申请日:2022-07-04

    Abstract: 本发明提供一种神经机器翻译模型的训练方法、翻译方法及装置,所述训练方法包括:构建神经机器翻译模型;将双语平行句对中的源语言句子和目标语言句子,以及知识图谱中每个三元组中的头实体和尾实体进行细粒度切分,得到标准源语言句子序列、标准目标语言句子序列以及知识图谱中每个三元组中的标准头实体‑关系序列和标准尾实体序列;将其输入编解码模块中预测得到目标语言句子序列以及尾实体序列;基于标准目标语言句子序列和预测的目标语言句子序列之间的交叉熵,以及知识图谱中每个三元组中的标准尾实体序列与预测的尾实体序列之间的交叉熵,共同训练该模型。本发明能够有效融合细粒度知识推断,提升神经机器翻译对于实体的翻译质量。

    一种实体关系抽取方法、装置、电子设备以及存储介质

    公开(公告)号:CN118657148A

    公开(公告)日:2024-09-17

    申请号:CN202410681340.9

    申请日:2024-05-29

    Abstract: 本发明提供一种实体关系抽取方法、装置、电子设备以及存储介质,涉及人工智能技术领域。实体关系抽取方法包括:利用注意力模型,处理待处理文本以及目标实体关系词,得到实体关系判别信息;利用实体关系判别信息,得到目标第一命名实体与候选第二命名实体在待处理文本中的第一关联度、目标第一命名实体与目标实体关系词在待处理文本中的第二关联度,以及候选第二命名实体与目标实体关系词在待处理文本中的第三关联度;响应于第一关联度、第二关联度以及第三关联度均大于各自对应的预设阈值,从待处理文本中抽取出目标第一命名实体和候选第二命名实体之间的待抽取的实体关系。本发明可以准确、高效地执行实体关系抽取任务。

    基于自动化驱动工具的社交网络数据采集方法和系统

    公开(公告)号:CN118626223A

    公开(公告)日:2024-09-10

    申请号:CN202410705471.6

    申请日:2024-06-03

    Abstract: 本发明公开了一种基于自动化驱动工具的社交网络数据采集方法,包括:获取输入的调度任务,将调度任务转化为结构化数据,并持久化到任务存储器;基于预设的优先级策略自动调整调度任务的执行顺序和执行频率;请求获取调度任务,根据与分配的调度任务匹配的预先配置的模板,采用自动化驱动工具于社交平台上自动采集分配的调度任务所需的数据;收集分配的调度任务的状态变化,待分配的调度任务完成后将采集到的数据上报,并修改分配的调度任务的下次执行时间。本发明可通过自动化驱动技术采集获取社交网络平台数据,可完成系统内持续任务的分类定级,根据各任务执行主体的状态动态分配任务以及资源回收。

    综合多模型的网络热点话题传播模式分类方法及系统

    公开(公告)号:CN116467454A

    公开(公告)日:2023-07-21

    申请号:CN202310504562.9

    申请日:2023-05-06

    Abstract: 本发明公开了一种综合多模型的网络热点话题传播模式分类方法,其包括以下步骤:步骤一、收集平台t时间段内的目标热点话题的帖子数据;步骤二、基于帖子数据计算帖子基本维度信息;步骤三、绘制关于时间‑帖子数量的话题热度变化曲线;步骤四、提取目标热点话题的竞争性话题,并计算竞争性话题数量;步骤五、基于帖子数据,量化目标热点话题的传播角色的信息;步骤六、通过漏斗模型和网络模型,进行目标热点话题的传播模式识别分类。本发明构建了一种普适的网络热点话题传播模式识别分类方法,能够有效地判断话题的传播类型,即使在话题部分维度数据缺失的情况下仍然具有较好的分类结果。

Patent Agency Ranking