基于符号和卷积神经网络的工业设备数据边缘处理方法

    公开(公告)号:CN110008898B

    公开(公告)日:2021-02-23

    申请号:CN201910261399.1

    申请日:2019-04-02

    Abstract: 本发明公开了一种基于符号和卷积神经网络的工业设备数据边缘处理方法。利用传感器通过间隔采样采集工业设备中不同健康条件下的高频信号时间序列数据,对高频信号时间序列数据进行处理获得符号图;将高频信号时间序列数据的符号图及其故障分类类型输入到预设设计构建的卷积神经网络中进行训练;将卷积神经网络的第一处理模块布置在边缘终端设备上,剩余部分布置在云端服务器上。本发明通过数据分割及符号化表示,实现高频数据的降维和压缩,从而节省信号传输的带宽,减轻云端服务器的计算压力,以此实现大型设备的在线监测和故障识别,为大型设备的在线健康监测提供了可靠有效的技术支持。

    基于符号和卷积神经网络的工业设备数据边缘处理方法

    公开(公告)号:CN110008898A

    公开(公告)日:2019-07-12

    申请号:CN201910261399.1

    申请日:2019-04-02

    Abstract: 本发明公开了一种基于符号和卷积神经网络的工业设备数据边缘处理方法。利用传感器通过间隔采样采集工业设备中不同健康条件下的高频信号时间序列数据,对高频信号时间序列数据进行处理获得符号图;将高频信号时间序列数据的符号图及其故障分类类型输入到预设设计构建的卷积神经网络中进行训练;将卷积神经网络的第一处理模块布置在边缘终端设备上,剩余部分布置在云端服务器上。本发明通过数据分割及符号化表示,实现高频数据的降维和压缩,从而节省信号传输的带宽,减轻云端服务器的计算压力,以此实现大型设备的在线监测和故障识别,为大型设备的在线健康监测提供了可靠有效的技术支持。

Patent Agency Ranking