-
公开(公告)号:CN114439563B
公开(公告)日:2023-08-18
申请号:CN202210065841.5
申请日:2022-01-20
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能技术领域,具体涉及一种滑压膨胀的压缩空气储能系统及方法。包括空气压缩支路、热循环回路、空气膨胀支路和空气调节支路,空气调节支路包括辅助回热换热器,辅助回热换热器的高温侧流道的两端分别与高温循环泵和低温蓄热器连接,辅助回热换热器的低温侧流道的进口端与储气装置连接,辅助回热换热器的低温侧流道的出口端分为两路且分别通过流量调节装置与高压空气膨胀机的进气口、低压空气膨胀机的进气口连接。本发明的滑压膨胀的压缩空气储能系统及方法,在提升变工况换热效率的同时能够使整个机组的出力保持稳定,进而使整个系统的效率得到提升;换热设备的变工况运行能力要求较低,降低了系统技术难度和成本。
-
公开(公告)号:CN118757941A
公开(公告)日:2024-10-11
申请号:CN202410914021.8
申请日:2024-07-09
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明属于太阳能及储能技术领域,尤其涉及一种光热耦合冷热电联储联供系统及方法,包括空气压缩单元、空气膨胀单元、蓄热单元和供冷供热单元,空气压缩单元由四级串联空气压缩机组成,每级空气压缩机的出口都设有级间换热器;空气膨胀单元由双级串联空气膨胀机组成;蓄热单元包括蓄热介质、光热器、高温罐、高温泵、中温罐、中温泵、低温罐和低温泵供冷供热单元包括加热器、外部常温水源、蒸汽发生器、冷却水塔、喷射制冷器、蒸发器、外部热水负载、外部蒸汽负载和外部冷能负载。本发明提高了系统的灵活性,避免了季节性用能需求不同造成的能量浪费。
-
公开(公告)号:CN114439564B
公开(公告)日:2023-08-18
申请号:CN202210113921.3
申请日:2022-01-30
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能技术领域,具体涉及一种光热增强的压缩空气储能系统及方法。所述光热增强的压缩空气储能系统包括:空气压缩支路、空气膨胀支路、压缩热支路、光热支路以及回热支路,所述光热支路包括依次串联的中温循环泵和光热集热装置,所述中温循环泵的输入端与所述高温蓄热装置连通,所述光热集热装置的输出端与所述高温蓄热装置连通;所述回热支路包括依次串联的高温循环泵和回热换热器的高温侧流道,所述高温循环泵的输入端与所述高温蓄热装置连通,所述回热换热器的高温侧流道的输出端与所述低温蓄热装置连通。本发明提供的光热增强的压缩空气储能系统及方法,能够降低压缩过程中的功耗,并增加了可再生能源的消纳途径和消耗能力。
-
公开(公告)号:CN114592939A
公开(公告)日:2022-06-07
申请号:CN202210027539.0
申请日:2022-01-11
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能系统技术领域,具体涉及一种光热压缩空气储能系统。包括:空气压缩支路,其包括依次串联的空气压缩机、蓄热换热器的高温侧流道及储气装置;空气膨胀支路,其包括依次串联的储气装置、回热换热器的低温侧流道及空气膨胀机;压缩热支路,其包括依次串联的低温蓄热装置、低温循环泵、蓄热换热器的低温侧流道、中温蓄热装置;光热支路,其包括依次串联的中温蓄热装置、中温循环泵、光热集热装置、高温蓄热装置、高温循环泵及回热换热器的高温侧流道;回热换热器的高温侧流道的出口端与低温蓄热装置连通。本系统能够降低能耗、增加可再生能源的消纳途径。
-
公开(公告)号:CN118911789A
公开(公告)日:2024-11-08
申请号:CN202410914024.1
申请日:2024-07-09
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明属于储能技术领域,提供了一种基于光热和压缩空气储能的热电联供系统,包括空气压缩单元、储气单元、空气膨胀单元和光热单元;空气压缩单元包括多级空气压缩机和多个加热器,各级空气压缩机后连接至少一个加热器。储气单元包括储气库,储气库用于存储压缩气体;储气单元的进气口连接空气压缩单元,储气单元的出气口连接空气膨胀单元。空气膨胀单元包括多个串联的空气膨胀机和多个回热器,各级空气膨胀机前连接至少一个回热器。光热单元包括光热回路;光热单元通过回热器与空气膨胀单元进行连接。本发明所述系统不仅能实现可调节输出电能功率,还能对外供热和调节温度,调节过程具备充裕的热能存储裕量,从而使系统具备良好的灵活性。
-
公开(公告)号:CN118911787A
公开(公告)日:2024-11-08
申请号:CN202410914019.0
申请日:2024-07-09
Applicant: 中国长江三峡集团有限公司 , 清华大学
IPC: F01K3/00 , F03G6/06 , F04B41/02 , F04B39/06 , F24S60/30 , F24S10/00 , F28D21/00 , H02J15/00 , H02J3/28
Abstract: 本发明公开了一种多源蓄热热电联供压缩空气储能系统,允许空气压缩机以较低排气温度设计和运行,同时通过设置储气库运行压力区间及膨胀机膨胀比配置,合理提升导热油换热器排油温度用于后续梯级利用,也使光热单元与压缩单元运行实现解耦,光热加热可与空气压缩过程同步进行,也可在空气压缩单元停机后独立运行。本发明所述系统在提高系统储能效率的同时,大大提高能量利用效率,更为弃光电现象提供了一种新的解决方案。
-
公开(公告)号:CN114517716B
公开(公告)日:2023-08-18
申请号:CN202210028293.9
申请日:2022-01-11
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能系统技术领域,具体涉及一种快速响应的光热压缩空气储能系统。包括:空气压缩支路,其包括依次串联的空气压缩机、蓄热换热器的高温侧流道及储气装置;空气膨胀支路,其包括依次串联的储气装置、回热换热器的低温侧流道、光热再热器的低温侧流道及空气膨胀机;压缩热循环回路,其由低温压缩热载体储罐及循环泵、蓄热换热器的低温侧流道、高温压缩热载体储罐及循环泵、回热换热器的高温侧流道首尾串联而成;光热循环回路,其由低温光热载体储罐及循环泵、光热集热装置、高温光热载体储罐及循环泵、光热再热器的高温侧流道首尾串联而成。本系统能够降低能耗、增加可再生能源的消纳途径,缩短系统响应时间。
-
公开(公告)号:CN114439563A
公开(公告)日:2022-05-06
申请号:CN202210065841.5
申请日:2022-01-20
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能技术领域,具体涉及一种滑压膨胀的压缩空气储能系统及方法。包括空气压缩支路、热循环回路、空气膨胀支路和空气调节支路,空气调节支路包括辅助回热换热器,辅助回热换热器的高温侧流道的两端分别与高温循环泵和低温蓄热器连接,辅助回热换热器的低温侧流道的进口端与储气装置连接,辅助回热换热器的低温侧流道的出口端分为两路且分别通过流量调节装置与高压空气膨胀机的进气口、低压空气膨胀机的进气口连接。本发明的滑压膨胀的压缩空气储能系统及方法,在提升变工况换热效率的同时能够使整个机组的出力保持稳定,进而使整个系统的效率得到提升;换热设备的变工况运行能力要求较低,降低了系统技术难度和成本。
-
公开(公告)号:CN118886158A
公开(公告)日:2024-11-01
申请号:CN202410790466.X
申请日:2024-06-19
Applicant: 中国长江三峡集团有限公司 , 清华大学
IPC: G06F30/20 , G06Q50/06 , G06F17/10 , G06F111/04
Abstract: 本公开属于压缩空气储能技术领域,特别涉及一种滑压运行的绝热压缩空气储能的调度方法及系统。所述方法包括:获取绝热压缩空气储能的目标状态变量;根据目标状态变量建立绝热压缩空气储能的目标离散状态方程;所述目标离散状态方程用于表征所述绝热压缩空气储能的状态空间;基于目标状态变量将所述状态空间分块化,并确定绝热压缩空气储能在状态空间的坐标;建立绝热压缩空气储能的系统约束和运行约束,结合绝热压缩空气储能在状态空间的坐标与目标离散状态方程,建立绝热压缩空气储能调度模型。本公开能够考虑到“A‑CAES的状态会影响其各个组成部分的工作特性”这一特点,进而能够保障所生成的调度计划的可行性。
-
公开(公告)号:CN114517716A
公开(公告)日:2022-05-20
申请号:CN202210028293.9
申请日:2022-01-11
Applicant: 中国长江三峡集团有限公司 , 清华大学
Abstract: 本发明涉及空气储能系统技术领域,具体涉及一种快速响应的光热压缩空气储能系统。包括:空气压缩支路,其包括依次串联的空气压缩机、蓄热换热器的高温侧流道及储气装置;空气膨胀支路,其包括依次串联的储气装置、回热换热器的低温侧流道、光热再热器的低温侧流道及空气膨胀机;压缩热循环回路,其由低温压缩热载体储罐及循环泵、蓄热换热器的低温侧流道、高温压缩热载体储罐及循环泵、回热换热器的高温侧流道首尾串联而成;光热循环回路,其由低温光热载体储罐及循环泵、光热集热装置、高温光热载体储罐及循环泵、光热再热器的高温侧流道首尾串联而成。本系统能够降低能耗、增加可再生能源的消纳途径,缩短系统响应时间。
-
-
-
-
-
-
-
-
-