-
公开(公告)号:CN118862144A
公开(公告)日:2024-10-29
申请号:CN202410837156.9
申请日:2024-06-26
Applicant: 北京交通大学
IPC: G06F21/62 , G06N3/0464 , G06N3/0442 , G06N3/094 , G06F18/25 , G06F18/22
Abstract: 本发明提供一种多模态隐私数据生成模型训练方法、数据生成方法及系统,属于数据隐私保护技术领域,本发明实现了在一个统一框架中生成RGB图像和表格数据,无需使用额外的公开数据和端到端的训练方式,并且各类型数据的生成过程中相互联系,提升了生成数据的语义一致性,能够有效融合不同模态的关键信息实现准确的多模态数据判别;提出多角度判别与多模态匹配损失,多模态判别损失主导GAN模型的训练过程,单模态判别损失用于辅助模型平衡不同模态的学习效率,匹配损失促进模型对模态间关系的学习。为了降低生成模型的隐私泄漏风险,提出将差分隐私机制应用在基于GAN的图像与表格数据联合生成模型上,以平衡合成数据的可用性与隐私性。