基于多层旋转记忆模型的光电信息处理方法

    公开(公告)号:CN113538512A

    公开(公告)日:2021-10-22

    申请号:CN202110750336.X

    申请日:2021-07-02

    Abstract: 本发明涉及一种光电信息处理方法,特别涉及一种基于多层旋转记忆模型的光电信息处理方法,属于计算机视觉领域。本发明建立一种多层旋转记忆模型,并将其用于相关滤波跟踪框架中,使得所公开方法在跟踪过程中具有记忆先前出现的场景的功能,从而可以在当前目标发生姿态突变、短暂消失后重现以或发生遮挡等问题时依然能持续稳定的跟踪,有效提升了鲁棒性。

    基于多层旋转记忆模型的光电信息处理方法

    公开(公告)号:CN113538512B

    公开(公告)日:2024-09-06

    申请号:CN202110750336.X

    申请日:2021-07-02

    Abstract: 本发明涉及一种光电信息处理方法,特别涉及一种基于多层旋转记忆模型的光电信息处理方法,属于计算机视觉领域。本发明建立一种多层旋转记忆模型,并将其用于相关滤波跟踪框架中,使得所公开方法在跟踪过程中具有记忆先前出现的场景的功能,从而可以在当前目标发生姿态突变、短暂消失后重现以或发生遮挡等问题时依然能持续稳定的跟踪,有效提升了鲁棒性。

    基于神经网络的DCF跟踪置信度评价与分类器更新方法

    公开(公告)号:CN110555870B

    公开(公告)日:2021-07-27

    申请号:CN201910856724.9

    申请日:2019-09-09

    Abstract: 本发明涉及一种基于神经网络的DCF跟踪置信度评价与分类器更新方法,属于计算机视觉技术领域。首先设计并训练响应图分析网络的小规模卷积神经网络。在相关滤波跟踪中,当分类器与搜索区域的特征进行卷积后,将产生的响应图输入到此网络中,并将输出作为这一帧分类器的跟踪置信度评分。当得分低于预设的低置信阈值时,认为目标受到了剧烈干扰,停止更新,以防止目标模型受污染,并且使更新的学习率与时间间隔受置信分数自适应调整,当分类器连续多帧都取得较高的置信分数时,认为目标外观处于高度相似状态,提高更新的间隔以缓解过拟合现象。本发明方法能够显著增强相关滤波跟踪对光照变化、遮挡、出视野等干扰因素的适应能力,提高空间与时间效率。

    基于记忆机制与卷积特征的相关滤波运动目标跟踪方法

    公开(公告)号:CN110276784B

    公开(公告)日:2021-04-06

    申请号:CN201910478278.2

    申请日:2019-06-03

    Abstract: 本发明提出了一种基于记忆机制与卷积特征的相关滤波运动目标跟踪方法,属于计算机视觉技术领域。本发明方法利用预先训练过的深层卷积神经网络提取目标的卷积特征,受人类视觉信息处理认知行为中人脑记忆机制的启发,将记忆机制融入到相关滤波方法的分类器的检测、训练和更新过程之中。其中,记忆机制由响应图决策、自适应峰值检测和自适应融合系数三部分组成。本发明方法具有较强的鲁棒性,在目标发生剧烈形变、短暂消失后重现或遮挡等条件下,仍然能持续稳定地实现目标跟踪。同时,具有较高的目标跟踪速度,降低了复杂度,减小了运算量。

    基于神经网络的DCF跟踪置信度评价与分类器更新方法

    公开(公告)号:CN110555870A

    公开(公告)日:2019-12-10

    申请号:CN201910856724.9

    申请日:2019-09-09

    Abstract: 本发明涉及一种基于神经网络的DCF跟踪置信度评价与分类器更新方法,属于计算机视觉技术领域。首先设计并训练响应图分析网络的小规模卷积神经网络。在相关滤波跟踪中,当分类器与搜索区域的特征进行卷积后,将产生的响应图输入到此网络中,并将输出作为这一帧分类器的跟踪置信度评分。当得分低于预设的低置信阈值时,认为目标受到了剧烈干扰,停止更新,以防止目标模型受污染,并且使更新的学习率与时间间隔受置信分数自适应调整,当分类器连续多帧都取得较高的置信分数时,认为目标外观处于高度相似状态,提高更新的间隔以缓解过拟合现象。本发明方法能够显著增强相关滤波跟踪对光照变化、遮挡、出视野等干扰因素的适应能力,提高空间与时间效率。

    基于记忆机制与卷积特征的相关滤波运动目标跟踪方法

    公开(公告)号:CN110276784A

    公开(公告)日:2019-09-24

    申请号:CN201910478278.2

    申请日:2019-06-03

    Abstract: 本发明提出了一种基于记忆机制与卷积特征的相关滤波运动目标跟踪方法,属于计算机视觉技术领域。本发明方法利用预先训练过的深层卷积神经网络提取目标的卷积特征,受人类视觉信息处理认知行为中人脑记忆机制的启发,将记忆机制融入到相关滤波方法的分类器的检测、训练和更新过程之中。其中,记忆机制由响应图决策、自适应峰值检测和自适应融合系数三部分组成。本发明方法具有较强的鲁棒性,在目标发生剧烈形变、短暂消失后重现或遮挡等条件下,仍然能持续稳定地实现目标跟踪。同时,具有较高的目标跟踪速度,降低了复杂度,减小了运算量。

Patent Agency Ranking