一种基于对抗生成网络的缺陷图像生成方法

    公开(公告)号:CN114022586B

    公开(公告)日:2024-07-02

    申请号:CN202111240124.3

    申请日:2021-10-25

    Abstract: 本发明属于图像处理相关技术领域,其公开了一种基于对抗生成网络的缺陷图像生成方法,方法包括以下步骤:(1)采集工件的缺陷图像及无缺陷图像以分别构建缺陷数据集及无缺陷数据集,并对缺陷数据集进行像素级标注;(2)分别构建缺陷掩码输入模块及缺陷生成对抗网络;(3)构建缺陷方向向量模块;(4)构建缺陷注意损失,缺陷注意损失包括缺陷全图损失及缺陷区域损失;(5)训练缺陷生成对抗网络以得到缺陷生成参数模型,采用该缺陷生成参数模型生成缺陷图像。本发明能够生成“以假乱真”且超越现有采样数据空间限制的缺陷图像数据集,生成缺陷图像单张图像质量高,生成缺陷图像数据集缺陷多样性好,具有生成采样数据空间之外数据的能力。

    基于引入自动记忆机制对抗自编码器的异常区域检测方法

    公开(公告)号:CN110992354B

    公开(公告)日:2022-04-12

    申请号:CN201911286021.3

    申请日:2019-12-13

    Abstract: 本发明属于图像处理技术领域,并具体公开了一种基于引入自动记忆机制对抗自编码器的异常区域检测方法。包括:在工业现场图像划分的训练集和测试集中,训练集仅包含OK样本,测试集包含OK和NG样本;设计具备自动记忆机制的对抗自编码器模型;使用训练集训练,测试集评价,得到最优模型;构建训练集样本异常值的统计模型,得出判别OK/NG的判别阈值。将待检测样本输入已训练网络模型,生成器重构得到重构图,获取异常值,若小于判别阈值判定为OK,否则判定为NG,将输入图与重构图输入比较模块得到异常区域位置。本发明仅使用OK样本作为训练集,能够判别OK/NG,定位异常区域位置,并且NG样本召回率较高,检测速度较快。

    一种基于图像级标注的工业图像异常区域像素级分割方法

    公开(公告)号:CN111445484A

    公开(公告)日:2020-07-24

    申请号:CN202010247704.4

    申请日:2020-04-01

    Abstract: 本发明属于机器视觉与机器学习领域,并具体公开了一种基于图像级标注的工业图像异常区域像素级分割方法,包括如下步骤:S1获取工业图像数据集,并进行图像级标注;S2构建正常图像模板生成网络,其包括正常图像模板生成器、异常图像模板生成器、正常图像鉴别器、异常图像鉴别器;S3根据优化目标,通过工业图像数据集对正常图像模板生成网络进行训练,得到正常图像模板生成模型;S4将待测工业图像输入正常图像模板生成模型中,得到对应的正常图像模板,进而将其与待测工业图像进行对比,实现对工业图像异常区域的分割。本方法能基于图像级标注数据获取精确的像素级图像分割结果,且相对于其他弱监督分割方法具有更好的实时性与泛化性。

    基于傅里叶变换和图像梯度特征实现表面缺陷检测的方法

    公开(公告)号:CN112669265A

    公开(公告)日:2021-04-16

    申请号:CN202011500470.6

    申请日:2020-12-17

    Abstract: 本发明属于图像处理相关技术领域,其公开了一种基于傅里叶变换和图像梯度特征实现表面缺陷检测的方法,包括以下步骤:(1)将采集到的工件表面图像转为灰度图;(2)求图像的梯度方向特征图,并将梯度方向进行压缩;(3)生成梯度方向矩形和垂直梯度方向矩形;(4)分别计算得到所述梯度方向矩形及所述垂直梯度方向矩形的灰度特征,并分别写入新的图像中以得到对应的梯度方向特征图及垂直梯度方向特征图;(5)将梯度方向特征图及垂直梯度方向特征图相乘,并做灰度拉伸变换;(6)对图像做阈值提取以得到疑似缺陷区域,并对所述疑似缺陷区域进行对比度筛选以得到目标区域,继而完成表面缺陷检测。本发明提高了准确性和实时性。

    一种基于图像级标注的工业图像异常区域像素级分割方法

    公开(公告)号:CN111445484B

    公开(公告)日:2022-08-02

    申请号:CN202010247704.4

    申请日:2020-04-01

    Abstract: 本发明属于机器视觉与机器学习领域,并具体公开了一种基于图像级标注的工业图像异常区域像素级分割方法,包括如下步骤:S1获取工业图像数据集,并进行图像级标注;S2构建正常图像模板生成网络,其包括正常图像模板生成器、异常图像模板生成器、正常图像鉴别器、异常图像鉴别器;S3根据优化目标,通过工业图像数据集对正常图像模板生成网络进行训练,得到正常图像模板生成模型;S4将待测工业图像输入正常图像模板生成模型中,得到对应的正常图像模板,进而将其与待测工业图像进行对比,实现对工业图像异常区域的分割。本方法能基于图像级标注数据获取精确的像素级图像分割结果,且相对于其他弱监督分割方法具有更好的实时性与泛化性。

    基于傅里叶变换和图像梯度特征实现表面缺陷检测的方法

    公开(公告)号:CN112669265B

    公开(公告)日:2022-06-21

    申请号:CN202011500470.6

    申请日:2020-12-17

    Abstract: 本发明属于图像处理相关技术领域,其公开了一种基于傅里叶变换和图像梯度特征实现表面缺陷检测的方法,包括以下步骤:(1)将采集到的工件表面图像转为灰度图;(2)求图像的梯度方向特征图,并将梯度方向进行压缩;(3)生成梯度方向矩形和垂直梯度方向矩形;(4)分别计算得到所述梯度方向矩形及所述垂直梯度方向矩形的灰度特征,并分别写入新的图像中以得到对应的梯度方向特征图及垂直梯度方向特征图;(5)将梯度方向特征图及垂直梯度方向特征图相乘,并做灰度拉伸变换;(6)对图像做阈值提取以得到疑似缺陷区域,并对所述疑似缺陷区域进行对比度筛选以得到目标区域,继而完成表面缺陷检测。本发明提高了准确性和实时性。

    基于引入自动记忆机制对抗自编码器的异常区域检测方法

    公开(公告)号:CN110992354A

    公开(公告)日:2020-04-10

    申请号:CN201911286021.3

    申请日:2019-12-13

    Abstract: 本发明属于图像处理技术领域,并具体公开了一种基于引入自动记忆机制对抗自编码器的异常区域检测方法。包括:在工业现场图像划分的训练集和测试集中,训练集仅包含OK样本,测试集包含OK和NG样本;设计具备自动记忆机制的对抗自编码器模型;使用训练集训练,测试集评价,得到最优模型;构建训练集样本异常值的统计模型,得出判别OK/NG的判别阈值。将待检测样本输入已训练网络模型,生成器重构得到重构图,获取异常值,若小于判别阈值判定为OK,否则判定为NG,将输入图与重构图输入比较模块得到异常区域位置。本发明仅使用OK样本作为训练集,能够判别OK/NG,定位异常区域位置,并且NG样本召回率较高,检测速度较快。

    一种基于对抗生成网络的缺陷图像生成方法

    公开(公告)号:CN114022586A

    公开(公告)日:2022-02-08

    申请号:CN202111240124.3

    申请日:2021-10-25

    Abstract: 本发明属于图像处理相关技术领域,其公开了一种基于对抗生成网络的缺陷图像生成方法,方法包括以下步骤:(1)采集工件的缺陷图像及无缺陷图像以分别构建缺陷数据集及无缺陷数据集,并对缺陷数据集进行像素级标注;(2)分别构建缺陷掩码输入模块及缺陷生成对抗网络;(3)构建缺陷方向向量模块;(4)构建缺陷注意损失,缺陷注意损失包括缺陷全图损失及缺陷区域损失;(5)训练缺陷生成对抗网络以得到缺陷生成参数模型,采用该缺陷生成参数模型生成缺陷图像。本发明能够生成“以假乱真”且超越现有采样数据空间限制的缺陷图像数据集,生成缺陷图像单张图像质量高,生成缺陷图像数据集缺陷多样性好,具有生成采样数据空间之外数据的能力。

Patent Agency Ranking