-
公开(公告)号:CN110059187A
公开(公告)日:2019-07-26
申请号:CN201910284597.X
申请日:2019-04-10
Applicant: 华侨大学
Abstract: 本发明公开了一种集成浅层语义预判模态的深度学习文本分类方法,方法包括:首先对文本语料实施常规的CNN深度学习训练,包括词嵌入、卷积、池化和模式输出;其次利用领域词汇字典作为浅层语义词汇,基于浅层语义词汇,计算浅层语义预判模式;接下来将浅层语义预判模态和深度学习决策模态进行双模态融合,作为SDG-CNN模型最终的决策模式,进而以该决策模式构建损失函数和实施参数优化。本发明解决了传统深度学习模型在模型优化过程中缺乏背景知识和语义信息,信息模态单一的缺陷,提升了深度学习文本分类模型的性能。
-
公开(公告)号:CN108182262A
公开(公告)日:2018-06-19
申请号:CN201810008291.7
申请日:2018-01-04
Applicant: 华侨大学
Abstract: 本发明公开了一种基于深度学习和知识图谱的智能问答系统构建方法和系统,利用爬虫获取互联网的问诊医疗数据集,并进行数据预处理获得有标签的数据集;结合医院电子病历构建基于医学领域的分词词典,并与医学词典合并作为系统的分词词典;构建疾病和症状关联的知识图谱,并进行疾病实体对齐和症状实体对齐;根据疾病实体对齐,获得有标签数据集;构建基于深度学习的语言模型;构建结合用户上下文信息的基于知识图谱的查询优化算法;构建语言模型和知识图谱融合的训练数据集并进行模型融合训练,获得基于语言模型和知识图谱的预诊融合模型。本发明基于深度学习和知识图谱,实现了结合用户主诉信息进行主动问诊交互,及根据用户主诉及问诊信息的疾病预诊。
-
公开(公告)号:CN108182262B
公开(公告)日:2022-03-04
申请号:CN201810008291.7
申请日:2018-01-04
Applicant: 华侨大学
IPC: G06F16/332 , G06F16/36 , G16H50/20
Abstract: 本发明公开了一种基于深度学习和知识图谱的智能问答系统构建方法和系统,利用爬虫获取互联网的问诊医疗数据集,并进行数据预处理获得有标签的数据集;结合医院电子病历构建基于医学领域的分词词典,并与医学词典合并作为系统的分词词典;构建疾病和症状关联的知识图谱,并进行疾病实体对齐和症状实体对齐;根据疾病实体对齐,获得有标签数据集;构建基于深度学习的语言模型;构建结合用户上下文信息的基于知识图谱的查询优化算法;构建语言模型和知识图谱融合的训练数据集并进行模型融合训练,获得基于语言模型和知识图谱的预诊融合模型。本发明基于深度学习和知识图谱,实现了结合用户主诉信息进行主动问诊交互,及根据用户主诉及问诊信息的疾病预诊。
-
公开(公告)号:CN110069632A
公开(公告)日:2019-07-30
申请号:CN201910284980.5
申请日:2019-04-10
Applicant: 华侨大学
Abstract: 本发明公开了一种集成浅层语义表示向量的深度学习文本分类方法,方法包括:首先对文本语料训练词嵌入向量,其次利用领域词汇字典作为浅层语义词汇,基于浅层语义词汇,生成文本语料中每一个词的浅层语义向量表达。接下来将两个词向量进行加权拼接作为新的词向量输入到CNN模型中,进行特征提取和模型训练,构建文本分类器。本发明解决基于大数据驱动的词向量表达缺少词法特征和知识表示,难以真正理解词汇语义信息的缺陷,使得模型具有更加丰富的特征表达和更高的分类性能。
-
公开(公告)号:CN110069632B
公开(公告)日:2022-06-07
申请号:CN201910284980.5
申请日:2019-04-10
Applicant: 华侨大学
IPC: G06F16/35 , G06F40/30 , G06F40/289 , G06F40/242 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种集成浅层语义表示向量的深度学习文本分类方法,方法包括:首先对文本语料训练词嵌入向量,其次利用领域词汇字典作为浅层语义词汇,基于浅层语义词汇,生成文本语料中每一个词的浅层语义向量表达。接下来将两个词向量进行加权拼接作为新的词向量输入到CNN模型中,进行特征提取和模型训练,构建文本分类器。本发明解决基于大数据驱动的词向量表达缺少词法特征和知识表示,难以真正理解词汇语义信息的缺陷,使得模型具有更加丰富的特征表达和更高的分类性能。
-
公开(公告)号:CN110059187B
公开(公告)日:2022-06-07
申请号:CN201910284597.X
申请日:2019-04-10
Applicant: 华侨大学
IPC: G06F16/35 , G06F40/289
Abstract: 本发明公开了一种集成浅层语义预判模态的深度学习文本分类方法,方法包括:首先对文本语料实施常规的CNN深度学习训练,包括词嵌入、卷积、池化和模式输出;其次利用领域词汇字典作为浅层语义词汇,基于浅层语义词汇,计算浅层语义预判模式;接下来将浅层语义预判模态和深度学习决策模态进行双模态融合,作为SDG‑CNN模型最终的决策模式,进而以该决策模式构建损失函数和实施参数优化。本发明解决了传统深度学习模型在模型优化过程中缺乏背景知识和语义信息,信息模态单一的缺陷,提升了深度学习文本分类模型的性能。
-
公开(公告)号:CN110060749A
公开(公告)日:2019-07-26
申请号:CN201910284998.5
申请日:2019-04-10
Applicant: 华侨大学
Abstract: 本发明公开了一种基于SEV-SDG-CNN的电子病历智能诊断方法,包括:挖掘医疗领域词汇来构建浅层语义词汇词典;基于浅层语义词汇生成文本语料中每一个词的浅层语义向量表达SEV;利用浅层语义词汇词典计算每一条语料的浅层语义预判模式SDG;将SEV和SDG融入传统CNN模型构建中,即在特征表达层将SEV与词嵌入向量进行拼接,在模式输出层将SDG和CNN判别模式进行融合,从而实现改进的SEV-SDG-CNN模型。本发明应用在电子病历疾病诊断中,能充分提取专业性极强、知识密度极高的电子病历所蕴含的大量丰富语义信息,并得益于CNN能从大数据中自动挖掘特征的优势,使得电子病历智能诊断方法具有较高的性能。
-
公开(公告)号:CN110060749B
公开(公告)日:2022-07-01
申请号:CN201910284998.5
申请日:2019-04-10
Applicant: 华侨大学
IPC: G16H10/60 , G06F40/284 , G06F40/30
Abstract: 本发明公开了一种基于SEV‑SDG‑CNN的电子病历智能诊断方法,包括:挖掘医疗领域词汇来构建浅层语义词汇词典;基于浅层语义词汇生成文本语料中每一个词的浅层语义向量表达SEV;利用浅层语义词汇词典计算每一条语料的浅层语义预判模式SDG;将SEV和SDG融入传统CNN分类模型构建中,即在特征表达层将SEV与词嵌入向量进行拼接,在模式输出层将SDG和CNN判别模式进行融合,从而实现改进的SEV‑SDG‑CNN分类模型。本发明应用在电子病历疾病诊断中,能充分提取专业性极强、知识密度极高的电子病历所蕴含的大量丰富语义信息,并得益于CNN能从大数据中自动挖掘特征的优势,使得电子病历智能诊断方法具有较高的性能。
-
-
-
-
-
-
-