基于伪影域对抗学习的深度伪造图像检测方法及装置

    公开(公告)号:CN118469968A

    公开(公告)日:2024-08-09

    申请号:CN202410636849.1

    申请日:2024-05-22

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于伪影域对抗学习的深度伪造图像检测方法及装置,包括:构建深度伪造图像检测模型和领域分类器,深度伪造图像检测模型包括特征提取器和伪造检测分类器,特征提取器是在Xception网络的输出层中嵌入空间通道注意力模块而得到,伪造检测分类器和领域分类器均采用依次连接的全连接层和Softmax分类器,并分别与特征提取器连接,结合领域分类器对深度伪造图像检测模型进行训练,得到经训练的深度伪造图像检测模型;将待检测的图像输入经训练的深度伪造图像检测模型,得到检测结果,检测结果为待检测的图像为真实图像和伪造图像的概率,根据检测结果确定待检测的图像为真实图像或伪造图像。本发明能够提升脸部伪造图像检测的准确率。

Patent Agency Ranking