自适应注意力指导机制的一般性目标检测方法

    公开(公告)号:CN111259930B

    公开(公告)日:2023-04-25

    申请号:CN202010020371.1

    申请日:2020-01-09

    Abstract: 本发明公开了一种自适应注意力指导机制的一般性目标检测方法,属于计算机视觉目标检测领域。包括交叉下采样、目标区域识别(SORR)、注意力指导机制的金字塔预测卷积(APPK)和并交比(IoU)自适应损失优化。交叉下采样可保留多尺度特征图中的整体细纹理特征,减少了在图像下采样过程中空间信息的丢失;SORR模块将特征图划分为n×n网格,并得到注意力得分图,提高了目标检测效率;APPK模块可以选择推荐区域来处理预测模块和多尺度目标之间的不匹配问题;IoU自适应损失函数用于处理训练中难样本(Hard example)的问题。该目标检测方法在准确度和检测速度方面都优于现有的一般性目标检测方法。

    自适应注意力指导机制的一般性目标检测方法

    公开(公告)号:CN111259930A

    公开(公告)日:2020-06-09

    申请号:CN202010020371.1

    申请日:2020-01-09

    Abstract: 本发明公开了一种自适应注意力指导机制的一般性目标检测方法,属于计算机视觉目标检测领域。包括交叉下采样、目标区域识别(SORR)、注意力指导机制的金字塔预测卷积(APPK)和并交比(IoU)自适应损失优化。交叉下采样可保留多尺度特征图中的整体细纹理特征,减少了在图像下采样过程中空间信息的丢失;SORR模块将特征图划分为n×n网格,并得到注意力得分图,提高了目标检测效率;APPK模块可以选择推荐区域来处理预测模块和多尺度目标之间的不匹配问题;IoU自适应损失函数用于处理训练中难样本(Hard example)的问题。该目标检测方法在准确度和检测速度方面都优于现有的一般性目标检测方法。

Patent Agency Ranking