-
公开(公告)号:CN115754964A
公开(公告)日:2023-03-07
申请号:CN202211474711.3
申请日:2022-11-23
Applicant: 南京信息工程大学
IPC: G01S7/41 , G06F18/2415 , G06F18/214 , G06N3/0464 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本发明公开基于SE‑Res2Net‑101的多普勒雷达杂波识别与分类方法,包括提取基数据中的雷达反射率ZH、差分反射率ZDR、相关系数ρHV和差分传播相移率KDP数值数据;将提取的数值数据预处理生成数据集;构建SE‑Res2Net‑101模型;将训练集数据输入到SE‑Res2Net‑101中进行模型训练;将测试数据集输入到训练好的模型中,通过模型给出的预测概率来进行杂波判断。解决当前需要通过地面地形数字化模拟且需要提供DEM的杂波检测技术难题,从ZH、ZDR、ρHV和KDP变量进行建立杂波预测模型,基于SE注意力机制的残差卷积网络的识别多普勒雷达中的杂波并进行生物杂波与地杂波分类方法,提高准确度、加快预测速度更快。