一种基于视觉显著性和深度神经网络的图像质量评价方法

    公开(公告)号:CN111882516A

    公开(公告)日:2020-11-03

    申请号:CN202010101248.2

    申请日:2020-02-19

    Abstract: 本发明公开了一种基于视觉显著性和深度神经网络的图像质量评价方法,具体如下:利用视觉显著性中的颜色显著性以及中央区域显著性,建立一种基于视觉显著性的图像显著性检测模型;利用人眼对颜色及图像中央特别关注的特点,生成颜色加权显著图;利用凸包原理,得出显著性物体的区域,生成凸包显著图;将颜色加权显著图和凸包显著图融合,得到最终显著图,并给出效果图;采用LIVE3DIQD_phase 1数据库作为图像预处理库,以及后面的训练库;融合左右眼图像的生成:通过将左视图视为参考,将左图像与右视差补偿图像融合来合成独眼图像;对立体失真图像进行视觉显著图的生成,融合生成的独眼图及其显著图;将卷积与神经网络两者相结合,得出卷积神经网络。

    一种基于视觉显著性和深度神经网络的图像质量评价方法

    公开(公告)号:CN111882516B

    公开(公告)日:2023-07-07

    申请号:CN202010101248.2

    申请日:2020-02-19

    Abstract: 本发明公开了一种基于视觉显著性和深度神经网络的图像质量评价方法,具体如下:利用视觉显著性中的颜色显著性以及中央区域显著性,建立一种基于视觉显著性的图像显著性检测模型;利用人眼对颜色及图像中央特别关注的特点,生成颜色加权显著图;利用凸包原理,得出显著性物体的区域,生成凸包显著图;将颜色加权显著图和凸包显著图融合,得到最终显著图,并给出效果图;采用LIVE3DIQD_phase 1数据库作为图像预处理库,以及后面的训练库;融合左右眼图像的生成:通过将左视图视为参考,将左图像与右视差补偿图像融合来合成独眼图像;对立体失真图像进行视觉显著图的生成,融合生成的独眼图及其显著图;将卷积与神经网络两者相结合,得出卷积神经网络。

Patent Agency Ranking