基于异构SoC的混合精度DNN性能成本模型构建系统

    公开(公告)号:CN119538997A

    公开(公告)日:2025-02-28

    申请号:CN202411575013.1

    申请日:2024-11-06

    Applicant: 南京大学

    Abstract: 本发明涉及深度学习加速的技术领域,公开了一种基于异构SoC的混合精度DNN性能成本模型构建系统,获取不同数据量从低精度到高精度和从高精度到低精度精度转换的时间和功耗,量化执行所述精度转换的时间,分析精度转换对计算流水线的执行开销和数据搬运开销,通过构建混合精度执行成本模型量化不同映射计划在异构SoC上的执行时间、功耗、层间切换开销和精度转换开销来构建系统,通过该系统进行层配置和统计信息决定每层的计算精度,估计不同环境条件下的功耗和执行时间,模拟在不同温度条件下系统的功耗和性能表,并实施实时监控机制来检测温度变化,实现的系统具有更高的能效,适用于能源敏感的应用场景。

    一种基于四进制脉冲的脉冲神经网络加速器及其计算方法

    公开(公告)号:CN119558360A

    公开(公告)日:2025-03-04

    申请号:CN202411607181.4

    申请日:2024-11-12

    Applicant: 南京大学

    Abstract: 本发明涉及神经网络技术领域,是一种基于四进制脉冲的脉冲神经网络加速器及其计算方法,具体方法包括:构建神经元模型,预设三个膜阈值,根据神经元实时膜电位和三个膜阈值进行四进制脉冲生成触发判断,同时在四进制脉冲生成过程中执行零跳过策略,筛选获得有效四进制脉冲;当所述神经元模型中的神经元生成并发放有效四进制脉冲完成后,通过膜电位重置策略对神经元的膜电位进行重置处理;同步使用带有四进制脉冲的输入数据对带有四进制脉冲的深度残差脉冲神经网络进行训练,并通过额外的加法器生成最终的输出膜电位和四进制脉冲;本发明显著缩短了SNN的处理时间窗口,提高了计算效率和能效,适用于各种神经网络计算任务。

Patent Agency Ranking