-
公开(公告)号:CN114268136B
公开(公告)日:2025-02-14
申请号:CN202111617062.3
申请日:2021-12-27
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 江苏省电力试验研究院有限公司 , 国网江苏省电力有限公司
Abstract: 本发明公开了一种考虑同步机频率响应特性的风机步进惯性控制改进方法,针对风机传统步进惯性控制在转速恢复阶段造成的频率二次跌落问题,本发明充分考虑同步机的频率响应特性,利用风机功率输出快速灵活和可塑性强的优点,改进其退出调频方式;当频率事件发生时,风机立即增加有功输出,并在一定时间内保持恒定功率;当频率达到最低点时,风机功率随着同步机功率的增加而减小,共同弥补负荷功率缺额。在克服二次跌落问题的同时,进一步提高初始功率支撑,从而达到减小最大频率偏差的目的。
-
公开(公告)号:CN115133549A
公开(公告)日:2022-09-30
申请号:CN202210587698.6
申请日:2022-05-27
Applicant: 江苏省电力试验研究院有限公司 , 南京理工大学 , 国网江苏省电力有限公司电力科学研究院
Abstract: 本发明公开了基于深度强化学习的风电机组电网惯量支撑方法,包括以下步骤:(1)获取风机转速、电网频率数据;(2)基于DDPG算法设计改进的风机一次调频控制策略;(3)在训练风速下对DDPG智能体进行训练;(4)利用步骤(3)训练好的智能体,在测试风速下根据风机转速和电网频率在线输出惯量支撑功率,实现风机对电网的惯量支撑。本发明的技术方案在风电机组RSC控制基础上,通过深度确定性策略梯度强化学习算法获得风电机组惯量支撑功率。与传统风机固定系数的一次调频控制相比,本发明提出的方法综合考虑风机稳定与惯量支撑效果,使风机在维持自身稳定运行的前提下充分利用转子动能为电网提供惯量支撑。
-
公开(公告)号:CN112983753B
公开(公告)日:2022-06-28
申请号:CN202110233276.4
申请日:2021-03-03
Applicant: 南京理工大学 , 江苏金风科技有限公司 , 国网江苏省电力有限公司电力科学研究院
Abstract: 本发明公开了一种基于无速度传感器地面试验台的风机机械动态模拟方法及系统。该方法在现有引入高阶滤波器的含时滞的风电机组试验台离散化模型的基础上,改变转矩补偿回路中加速度的观测方式,通过对风电机组全功率地面试验台和要模拟的风力机进行测试得到两者的转动惯量,其次获取试验台电动机驱动转矩响应值和发电机电磁转矩响应值,通过计算两者差值并除以试验台整体的转动惯量进行加速度观测,最后基于加速度进行惯量补偿。与传统基于转速差分的转动惯量补偿策略相比,本发明无需安装高精度转速传感器就可实现转动惯量补偿策略,使得全功率试验台能够稳定模拟大转动惯量的风力机,协助科研人员在实验室环境中开展风力机发电、控制、涉网等实验。
-
公开(公告)号:CN112459964B
公开(公告)日:2022-01-14
申请号:CN202011227768.4
申请日:2020-11-06
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 江苏金风科技有限公司
Abstract: 本发明公开了一种考虑风力机变桨控制器积分饱和的自适应桨距角控制方法,针对风力机采取桨距角调节方式实现限功率控制的过程中,由于积分饱和作用导致PI变桨控制器性能下降的现象,提出了一种抗积分饱和的自适应桨距角控制方法,在考虑变桨执行机构的惯性、速率限制特点的基础上,通过桨距角参考指令和实际指令的差值对PI控制器的积分时间常数进行自适应调整,实现风力机PI变桨控制器的抗积分饱和运行,有效避免了风速剧烈波动时控制器性能下降的问题。本发明提出了适用于风力机变桨系统的抗积分饱和方法,改进了风速剧烈波动时风力机PI变桨控制器的控制性能,可以减弱风轮转速的波动程度,能够减小变桨机构的动作幅度,缓解变桨系统的机械疲劳。
-
公开(公告)号:CN113464378A
公开(公告)日:2021-10-01
申请号:CN202110787830.3
申请日:2021-07-13
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 江苏金风科技有限公司
Abstract: 本发明公开了一种基于深度强化学习的提升风能捕获的转速跟踪目标优化方法。该方法在传统叶尖速比法的基础上,通过深度确定性策略梯度强化学习算法获得优化后的转速跟踪目标。与传统变速风机的基于最大功率点跟踪控制的风能捕获方法相比,本发明提出的方法综合考虑了风机的慢动态特性和风能分布特性对风能捕获的影响,不仅可以匹配风机的慢动态特性,而且更侧重高风速下的转速跟踪,在不改变转速跟踪控制器的情况下,保证良好转速跟踪效果的同时,有效提升了湍流风速下风机的风能捕获效率。
-
公开(公告)号:CN112664393A
公开(公告)日:2021-04-16
申请号:CN202011535198.5
申请日:2020-12-22
Applicant: 南京理工大学 , 江苏金风科技有限公司 , 国网江苏省电力有限公司 , 国网江苏省电力有限公司电力科学研究院
IPC: F03D7/04
Abstract: 本发明针对现有研究没有最大化利用风轮变速缓解变桨动作的问题,公开了一种基于最大不变桨风速范围指标的风机有功功率控制方法,包括:获取风机相关参数;根据风机稳定性分析,获取风机的最大不变桨风速范围;建立不变桨风速范围指标;基于最大不变桨风速范围实现有功功率控制;基于所述不变桨风速范围指标对最大不变桨风速范围进行评价,进而对风机有功功率控制方法进行评价。本发明提出的改进的基于最大不变桨风速范围的风机有功功率控制方法,能最大程度地利用风轮变速应对风速扰动,进一步减少风机变桨动作,缓解变桨机构疲劳载荷。
-
公开(公告)号:CN109488525B
公开(公告)日:2020-07-03
申请号:CN201811335726.5
申请日:2018-11-11
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院
IPC: F03D7/00
Abstract: 本发明公开了一种基于提高转速下限的转速跟踪目标优化方法,针对大转动惯量风机的慢动态特性使得风机在转速过低时无法及时加速而导致的风能损失问题,该方法在传统叶尖速比法的基础上,引入一个低通滤波器,对理论最优转速进行滤波,然后对风机的运行转速下限进行限制,同时将参考转速整体上移,从而得到新的转速跟踪目标。通过设置转速下限,使得当风速突增时,风机能够更快地追踪上当前风速。本发明虽然放弃了低风速下的转速跟踪,但是可以有效提高风机在高风速区域的动态性能,使得风机能够捕获更多的风能。
-
公开(公告)号:CN115405474B
公开(公告)日:2024-11-29
申请号:CN202211002178.0
申请日:2022-08-21
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 江苏省电力试验研究院有限公司
IPC: F03D17/00
Abstract: 本发明公开了一种基于转动惯量补偿策略的风电机组试验台失稳辨识方法,首先测量风电机组试验台通信时延及其转动惯量大小,其次获取风电机组试验台内部计算的气动转矩指令、电磁转矩指令及拟模拟的风电机组转动惯量,进而实时估算每一时刻风电机组试验台稳定时的补偿转矩理论极限值,在此基础上,考虑噪声和阻尼补偿不准确等影响,对极限值进一步放大得到补偿转矩失稳判定边界,最后通过实时比较风电机组试验台真实采集的补偿转矩与补偿转矩失稳判定边界大小来监测风电机组试验台失稳与否。该方法能在风电机组试验台失稳发生的初期,在转速失稳振荡/飙升现象还未明显发生时,及时检测失稳状况,确保风电机组试验台在复杂应用环境下的安全稳定性。
-
公开(公告)号:CN114263564B
公开(公告)日:2024-02-13
申请号:CN202111543163.0
申请日:2021-12-16
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 国网江苏省电力有限公司
IPC: F03D7/00
Abstract: 本发明公开了一种考虑不变桨风速范围的风电机组有功功率控制方法及系统,方法包括:获取风机相关参数;计算风机的不变桨风速范围;分析桨距角对不变桨风速范围的影响规律;建立被动变速风轮桨距角与风速变化范围之间的适配关系;实现考虑不变桨风速范围的风机有功功率控制。本发明提出的考虑不变桨风速范围的风机有功功率控制方法,能够使被动变速风轮不变桨风速范围动态匹配风速实际波动范围,降低风轮达到转速边界的频次,缓解风轮超速和电磁功率跌落。
-
公开(公告)号:CN116937704A
公开(公告)日:2023-10-24
申请号:CN202310804944.3
申请日:2023-07-03
Applicant: 南京理工大学 , 国网江苏省电力有限公司电力科学研究院 , 江苏省电力试验研究院有限公司 , 国网江苏省电力有限公司
Abstract: 本发明公开了一种有效利用风轮动能的风电场一次调频控制方法。针对目前风电场一次调频难以合理地利用各机组风轮动能导致参与电网调频效果不佳的问题,本发明首先设计风电场一次调频功率指令使电网频率沿设定轨迹运行,同时根据风电场内各机组最大可释放动能比例分配调频功率指令。其次,利用场内各机组最大可释放动能判断切换不同频率运行阶段的时间,实现充分利用风轮动能改善最大频率偏差这一关键调频指标。最后,随着风电场内各机组输出功率减小并小于最大功率点跟踪控制功率指令后自行切换恢复至初始状态,电网频率也将逐步上升至稳态值,有效地避免了现有技术中频率发生二次跌落进一步恶化调频效果的问题。
-
-
-
-
-
-
-
-
-