-
公开(公告)号:CN115661544A
公开(公告)日:2023-01-31
申请号:CN202211389124.4
申请日:2022-11-08
Applicant: 吉林农业大学
IPC: G06V10/764 , G06V10/774 , G06V10/77 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了基于N‑MobileNetXt的菠菜幼苗水分胁迫等级分类系统及方法,属于图像识别和深度学习技术领域,包括图像采集模块、图像预处理模块、图像特征提取模块及显示模块;图像采集模块加载一张菠菜幼苗图片或视频中的一帧作为输入;将采集的图像输入到图像处理模块进行图像预处理,处理好的待检测图像继续输入到图像特征提取模块中,图像特征提取模块将图像预处理模块发送的菠菜叶片图像进行特征提取并分级,并通过显示模块输出等级结果。本发明应用卷积神经网络,根据菠菜叶片图像识别菠菜幼苗的水分胁迫等级并分类,从而实现快速有效的菠菜幼苗水分胁迫检测以监测作物状态,为作物灌溉提供科学指导。
-
公开(公告)号:CN115661544B
公开(公告)日:2024-04-05
申请号:CN202211389124.4
申请日:2022-11-08
Applicant: 吉林农业大学
IPC: G06V10/764 , G06V10/774 , G06V10/77 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了基于N‑MobileNetXt的菠菜幼苗水分胁迫等级分类系统及方法,属于图像识别和深度学习技术领域,包括图像采集模块、图像预处理模块、图像特征提取模块及显示模块;图像采集模块加载一张菠菜幼苗图片或视频中的一帧作为输入;将采集的图像输入到图像处理模块进行图像预处理,处理好的待检测图像继续输入到图像特征提取模块中,图像特征提取模块将图像预处理模块发送的菠菜叶片图像进行特征提取并分级,并通过显示模块输出等级结果。本发明应用卷积神经网络,根据菠菜叶片图像识别菠菜幼苗的水分胁迫等级并分类,从而实现快速有效的菠菜幼苗水分胁迫检测以监测作物状态,为作物灌溉提供科学指导。
-