-
公开(公告)号:CN105372623B
公开(公告)日:2018-08-07
申请号:CN201510932335.1
申请日:2015-12-15
Applicant: 吉林大学
IPC: G01S3/14
Abstract: 本发明提出种基于L型阵列的信源仰角和方位角估计方法,涉及阵列信号处理领域。利用L型阵列的特殊性,选取不同位置的阵元组成子阵和子阵二,子阵中仅仅包含仰角信息,与方位角无关,首先对子阵进行稀疏表示,运用非凸惩罚函数的方式,重构出仰角值,将仰角估计值代入到子阵二的方向矩阵中并稀疏表示,得到了只包含方位角的接受模型,再对其利用奇异值分解,通过凸优化工具包求解出方位角,并且完成了参数的自动配对。优点是解决了稀疏重构在面对基于稀疏重构的多参数联合估计时的高维网格划分难的问题,利用两个子阵列的先后求解的过程,完成了参数的自动配对,能更好地抑制噪声对信号的干扰,提高了估计的精度。
-
公开(公告)号:CN105372623A
公开(公告)日:2016-03-02
申请号:CN201510932335.1
申请日:2015-12-15
Applicant: 吉林大学
IPC: G01S3/14
CPC classification number: G01S3/14
Abstract: 本发明提出一种基于L型阵列的信源仰角和方位角估计方法,涉及阵列信号处理领域。利用L型阵列的特殊性,选取不同位置的阵元组成子阵一和子阵二,子阵一中仅仅包含仰角信息,与方位角无关,首先对子阵一进行稀疏表示,运用非凸惩罚函数的方式,重构出仰角值,将仰角估计值代入到子阵二的方向矩阵中并稀疏表示,得到了只包含方位角的接受模型,再对其利用奇异值分解,通过凸优化工具包求解出方位角,并且完成了参数的自动配对。优点是解决了稀疏重构在面对基于稀疏重构的多参数联合估计时的高维网格划分难的问题,利用两个子阵列的先后求解的过程,完成了参数的自动配对,能更好地抑制噪声对信号的干扰,提高了估计的精度。
-