-
公开(公告)号:CN118280435A
公开(公告)日:2024-07-02
申请号:CN202410311424.3
申请日:2024-03-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了基于异构网络的癌症驱动基因挖掘和可解释性分析方法,方法包括:构建多组学异构网络,并通过所述多组学异构网络提取节点初始特征;通过沿特定元路径随机游走的方式构建信息传递子图,并进行基于元路径的异构网络特征提取,得到基因节点的表示向量;将基因节点的表示向量输入多层线性分类器,利用所述多层线性分类器进行节点分类,输出癌症驱动基因的分析结果。本发明通过包含多头注意力和自注意力机制的网络表征算法计算元路径内部的表示向量,以及通过全局注意力的方式计算每种元路径对于分类问题的贡献权重,可以得到一个鲁棒性更强效果更好的癌症驱动基因预测结果。
-
公开(公告)号:CN117393143B
公开(公告)日:2024-06-25
申请号:CN202311316888.5
申请日:2023-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。
-
公开(公告)号:CN117153260B
公开(公告)日:2024-06-25
申请号:CN202311204657.5
申请日:2023-09-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B30/10 , G06F18/23 , G06F18/22 , G06F18/2135
Abstract: 本发明公开了一种基于对比学习的空间转录组数据聚类方法、装置、设备及存储介质,该方法包括:基于空间转录组数据获得加权的特征矩阵和邻接矩阵并构建邻接图;将邻接图分别输入孪生网络结构两个编码器以学习第一节点表示和第二节点表示;基于第一节点表示、第二节点表示构建用于计算对比损失的正样本集;基于节点的软聚类分布和辅助分布计算聚类损失;通过对比损失和聚类损失指导模型训练进而获得聚类结果。通过孪生网络结构进行对比学习获得用于构建正样本集的节点表示,并计算对比损失和聚类损失,并基于节点间的对比损失和聚类损失指导模型训练,如此基于对比学习获得了针对基因转录组数据的数据聚类方法,提高了空间转录组数据聚类的针对性和准确性。
-
公开(公告)号:CN116884473B
公开(公告)日:2024-04-26
申请号:CN202310581243.8
申请日:2023-05-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B15/20 , G16B40/00 , G06F18/214 , G06F18/241
Abstract: 本发明公开了一种蛋白质功能预测模型生成方法及装置,包括获取训练蛋白质的氨基酸三维原子坐标,并根据其进行图论方法生成蛋白质二维接触图;对训练蛋白质的氨基酸三维原子坐标进行算法处理获取第一特征矩阵,对蛋白质二维接触图进行算法处理获取第二特征矩阵,第一特征矩阵与训练蛋白质的氨基酸三维原子坐标中序列作用位点对应,第二特征矩阵与训练蛋白质的氨基酸三维原子坐标中结构作用折叠结构对应;根据第一特征矩阵和第二特征矩阵分别对应的数据标签训练预先构建的蛋白质功能分类器,得到蛋白质功能预测模型。通过将训练蛋白质的氨基酸结构和序列作为信息源提取特征,提高了预测模型对蛋白质功能的预测精度。
-
公开(公告)号:CN117153260A
公开(公告)日:2023-12-01
申请号:CN202311204657.5
申请日:2023-09-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B30/10 , G06F18/23 , G06F18/22 , G06F18/2135
Abstract: 本发明公开了一种基于对比学习的空间转录组数据聚类方法、装置、设备及存储介质,该方法包括:基于空间转录组数据获得加权的特征矩阵和邻接矩阵并构建邻接图;将邻接图分别输入孪生网络结构两个编码器以学习第一节点表示和第二节点表示;基于第一节点表示、第二节点表示构建用于计算对比损失的正样本集;基于节点的软聚类分布和辅助分布计算聚类损失;通过对比损失和聚类损失指导模型训练进而获得聚类结果。通过孪生网络结构进行对比学习获得用于构建正样本集的节点表示,并计算对比损失和聚类损失,并基于节点间的对比损失和聚类损失指导模型训练,如此基于对比学习获得了针对基因转录组数据的数据聚类方法,提高了空间转录组数据聚类的针对性和准确性。
-
公开(公告)号:CN115497555B
公开(公告)日:2024-01-05
申请号:CN202210980663.9
申请日:2022-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种多物种蛋白质功能预测方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:将多物种蛋白质的标签矩阵和特征矩阵输入预先构建的跨物种异构网络;在所述跨物种异构网络的每个传播层传播所述标签矩阵和所述特征矩阵,获得传播后的目标标签矩阵和目标特征矩阵;将所述目标标签矩阵和所述目标特征矩阵进行加权获得预测得分矩阵,并基于所述预测得分矩阵获得所述多物种蛋白质(56)对比文件WO 2021041199 A1,2021.03.04WO 2022104265 A1,2022.05.19宋宝兴等“.基于蛋白质相互作用网络挖掘物种内的功能相似蛋白质”《.生物物理学报》.2011,第27卷(第9期),第789-800页.潘怡等.“加权优先级网络在蛋白质功能预测中的应用研究”《.小型微型计算机系统》.2017,第38卷(第9期),第1977-1982页.黄佳“.基于拓扑和序列的多生物网络比对算法的研究”《.《中国优秀硕士学位论文全文数据库》.2022,(第1期),第A006-454页.chen lei等.“Identifying novel proteinphenotype annotations by hybridizingprotein-protein interactions and proteinsequence similarities”《.Moleculargenetics and genomics : MGG》.2016,第291卷(第2期),第913-934页.H Wang等“.Combining graphconvolutional neural networks and labelpropagation”《.ACM trans》.2021,第40卷(第4期),第1-27页.
-
公开(公告)号:CN115497555A
公开(公告)日:2022-12-20
申请号:CN202210980663.9
申请日:2022-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种多物种蛋白质功能预测方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:将多物种蛋白质的标签矩阵和特征矩阵输入预先构建的跨物种异构网络;在所述跨物种异构网络的每个传播层传播所述标签矩阵和所述特征矩阵,获得传播后的目标标签矩阵和目标特征矩阵;将所述目标标签矩阵和所述目标特征矩阵进行加权获得预测得分矩阵,并基于所述预测得分矩阵获得所述多物种蛋白质的功能预测得分。如此,基于跨物种异构网络上实现了标签与特征的同时传播,提高了多物种蛋白质功能的预测的准确性和有效性。
-
公开(公告)号:CN115577273B
公开(公告)日:2024-04-26
申请号:CN202210970095.4
申请日:2022-08-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种基于对比学习的单细胞数据聚类方法、装置、设备及存储介质,该方法包括:通过预先构建的特征提取模块确定待聚类单细胞数据的正视图对并提取所述正视图对的特征;通过预先构建的对比学习模型将所述特征进行对比学习,获得所述待聚类单细胞数据的高阶表示,并对所述高阶表示进行聚类分析以获得所述待聚类单细胞数据的聚类分析结果。如此,通过特征提取、对比学习获得了待聚类单细胞数据的高阶表示,解决了当前单细胞测序数据高维稀疏、种群间不平衡以及测序过程经常发生drop‑out事件的问题。
-
公开(公告)号:CN116246698A
公开(公告)日:2023-06-09
申请号:CN202211090606.X
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F40/30 , G06N3/0464
Abstract: 本发明公开了一种基于神经网络的信息提取方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:本发明从预先获得的metapath实例中提取语义信息;基于注意力聚合机制对所述语义信息进行编码,获得语义注意力系数,基于所述语义注意力系数聚合邻居节点;通过非线性神经网络对所述语义信息进行学习,获得二次语义信息,将二次语义信息聚合至所述邻居节点中,获得节点嵌入;通过非线性神经网络融合多个metapath下的所述节点嵌入,获得最终节点表示。如此通过非线性神经网络二次提取metapath实例中的语义信息,充分利用了各个节点的语义信息,提升了信息提取的效果。
-
公开(公告)号:CN115577273A
公开(公告)日:2023-01-06
申请号:CN202210970095.4
申请日:2022-08-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种基于对比学习的单细胞数据聚类方法、装置、设备及存储介质,该方法包括:通过预先构建的特征提取模块确定待聚类单细胞数据的正视图对并提取所述正视图对的特征;通过预先构建的对比学习模型将所述特征进行对比学习,获得所述待聚类单细胞数据的高阶表示,并对所述高阶表示进行聚类分析以获得所述待聚类单细胞数据的聚类分析结果。如此,通过特征提取、对比学习获得了待聚类单细胞数据的高阶表示,解决了当前单细胞测序数据高维稀疏、种群间不平衡以及测序过程经常发生drop‑out事件的问题。
-
-
-
-
-
-
-
-
-