-
公开(公告)号:CN119114970A
公开(公告)日:2024-12-13
申请号:CN202411270560.9
申请日:2024-09-11
Abstract: 一种通过使用激光选区熔化技术制备耐700℃高性能钛基复合材料的方法,它涉及合金领域,本发明的目的是为了解决耐高温钛基复合材料的传统方法制备和加工过程繁琐复杂、复杂构件成形难度大的问题,以及钛基复合材料在3D打印过程中存在成形性与高温性能难以兼顾的问题,本发明的方法是以钛合金TC11粉末作为激光选区熔化制备高温钛基复合材料的基体,以陶瓷粉末作为成分改性的原料;低能球磨混合,干燥;设计并构建立体模型,并设置打印参数和打印策略预热打印基板,用干燥后的复合粉末打印;退火热处理。本发明的轻质钛基复合材料,耐热温度达到700℃,更好地满足使用需求。
-
公开(公告)号:CN114918413B
公开(公告)日:2024-03-29
申请号:CN202210534909.X
申请日:2022-05-17
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及烧结技术领域,特别涉及一种高通量制备块体的装置、系统和方法。一种高通量制备块体的装置,包括多个层间压板和多个层内挡片;所述层间压板的制备材料包括耐高温硬质合金、石墨和碳/碳复合材料中的至少一种;所述层内挡片的制备材料包括耐高温塑性合金和金属钛中的至少一种;所述层间压板为板状,所述层内挡片为片状,所述层内挡片设置于两个所述层间压板之间并与层间压板配合形成多个封闭空间,所述封闭空间用于装填粉末。本发明实施例提供了一种高通量制备块体的装置、系统和方法,能够通过一次烧结处理得到多个块体,且块体尺寸控制较为良好,表面质量好,而且即使在边角处的样品也不存在明显的缺陷,样品之间易于拆开。
-
公开(公告)号:CN114525424A
公开(公告)日:2022-05-24
申请号:CN202210165173.3
申请日:2022-02-17
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及金属基复合材料技术领域,特别涉及一种钛基复合材料及其制备方法。该钛基复合材料的制备方法包括如下步骤:步骤一:将钛合金粉末和增强体粉末混合均匀,得到混合物;步骤二:将所述混合物装入不锈钢包套中,然后将所述不锈钢包套进行第一热等静压烧结处理后并去除所述不锈钢包套,得到烧结体;其中,所述第一热等静压烧结处理的温度不大于1080℃;步骤三:将所述烧结体进行第二热等静压烧结处理,得到钛基复合材料;其中,所述第二热等静压处理的温度不小于1100℃。本发明提供了一种钛基复合材料及其制备方法,能够提供一种室温和高温环境下均具备优异力学性能的钛基复合材料。
-
公开(公告)号:CN114438360A
公开(公告)日:2022-05-06
申请号:CN202111678035.7
申请日:2021-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及复合材料加工技术领域,本发明公开了一种原位自生(TiNb)C强化超细晶TiNbMo难熔浓缩合金基复合材料及制备方法。其中制备方法包括如下步骤:将增强相和基体相进行球磨和热压烧结得到所述的复合材料,所述的增强相为过量Ti和NbC原位自生反应生成亚微米级高硬度(TiNb)C,所述的基体相为原位自生置换的Nb与Ti和Mo形成亚微米级TiNbMo。本发明的复合材料具有高模量、高硬度、高强度特点。
-
公开(公告)号:CN118682145A
公开(公告)日:2024-09-24
申请号:CN202410742471.3
申请日:2024-06-07
Applicant: 哈尔滨工业大学
IPC: B22F10/28 , B22F10/38 , B22F10/47 , B22F10/366 , B22F10/64 , B22F1/12 , B22F9/04 , B22F10/32 , C22C49/11 , C22C49/14 , B33Y10/00 , B33Y70/10 , B33Y40/20 , B33Y80/00 , C22C101/22
Abstract: 本申请公开了一种高强度钛基复材壳体激光增材制备方法及钛基复合壳体,属于选区激光熔化制备技术领域,制备步骤如下:将TiB2粉和Ti合金粉末球磨混合,制备复合基板粉末;构建壳体数字模型,导入打印机的模型处理软件中,对待打印的壳体数字模型添加支撑;设置打印参数和打印策略,将添加支撑后的待打印壳体数字模型切片处理;将制备得到的复合基板粉末装入打印机送粉平台,打印;打印完成后使用线切割技术将打印好的壳体从基板上分离;将分离后的壳体进行表面处理,得到中间钛基复材壳体;因此,本申请采用上述的一种高强度钛基复材壳体激光增材制备方法及钛基复合壳体,解决了打印态钛基复合材料各向异性差异明显,力学性能等待提高的问题。
-
公开(公告)号:CN117620183A
公开(公告)日:2024-03-01
申请号:CN202311655220.3
申请日:2023-12-05
Applicant: 哈尔滨工业大学
IPC: B22F9/04 , B22F1/142 , B22F10/28 , B22F1/16 , B22F10/64 , C22C14/00 , B33Y10/00 , B33Y40/10 , B33Y40/20 , B33Y70/10
Abstract: 一种采用稀土硅化物优化增材制造高温钛合金力学性能的方法,本发明涉及合金领域。本发明通过低能球磨方法在高温钛合金球形粉末表面上均匀包覆稀土硅化物,混合后的粉末球形度未受影响,流动性保持良好,在后续激光增材制造过程中改善了高温钛合金的成形性,测试材料的室温、高温力学性能均得到提升。本发明应用于高温钛合金领域。
-
公开(公告)号:CN114406275A
公开(公告)日:2022-04-29
申请号:CN202210078260.5
申请日:2022-01-24
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及金属复合材料技术领域,特别涉及一种纳米TiB增强钛基复合粉末及其制备方法。该纳米TiB增强钛基复合粉末的制备方法包括如下步骤:步骤一,将钛合金粉末和增强体粉末混合均匀,得到混合物;步骤二,将所述混合物进行真空反应热压烧结处理,得到烧结体;步骤三,对所述烧结体进行加热旋转处理,以使受热熔融的烧结体旋出得到熔融液滴,将所述熔融液滴进行冷却后得到所述纳米TiB增强钛基复合粉末。本发明提供的纳米TiB增强钛基复合粉末的制备方法,能够使制备的纳米TiB增强钛基复合粉末的球形度高,粒径范围窄,且内部增强相分布均匀。
-
公开(公告)号:CN114406275B
公开(公告)日:2024-10-25
申请号:CN202210078260.5
申请日:2022-01-24
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及金属复合材料技术领域,特别涉及一种纳米TiB增强钛基复合粉末及其制备方法。该纳米TiB增强钛基复合粉末的制备方法包括如下步骤:步骤一,将钛合金粉末和增强体粉末混合均匀,得到混合物;步骤二,将所述混合物进行真空反应热压烧结处理,得到烧结体;步骤三,对所述烧结体进行加热旋转处理,以使受热熔融的烧结体旋出得到熔融液滴,将所述熔融液滴进行冷却后得到所述纳米TiB增强钛基复合粉末。本发明提供的纳米TiB增强钛基复合粉末的制备方法,能够使制备的纳米TiB增强钛基复合粉末的球形度高,粒径范围窄,且内部增强相分布均匀。
-
公开(公告)号:CN118109880A
公开(公告)日:2024-05-31
申请号:CN202311721133.3
申请日:2023-12-14
Applicant: 哈尔滨工业大学
Abstract: 一种钛基复合材料表面高热导率镀层的制备方法,它涉及金属材料及构件表面改性领域,本发明为了解决钛基复合材料服役过程中因热导率低而导致的局部温差过大,以及钛基复合材料表面难以电镀导热层的问题。本发明首次提出了:通过电镀工艺,在钛基复合材料表面镀覆热导率高的材料制备出高导热的镀层,代替热障涂层,通过热疏导使构件表面温差减小,温度均匀化,从而改善局部过热使钛基复合材料使用温度受限的问题。显著提高了钛基复合材料表面横向热导率,同时镀层与基材结合良好,具有一定的硬度和耐热温度,可应用于高速飞行器的钛基复合材料结构表面,提高钛材结构的横向导热效率,优化构件表面的热量管理。
-
公开(公告)号:CN115502399A
公开(公告)日:2022-12-23
申请号:CN202211185274.3
申请日:2022-09-27
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种低温热等静压制备钛基复合材料的方法以及由此制得的钛基复合材料。所述方法为:将钛基粉末和增强相原料粉末混合均匀后进行真空热压烧结,得到钛基复合材料坯料;将钛基复合材料坯料进行制粉,得到钛基复合粉末;将钛基复合粉末装入钢包套中,经真空除气与封焊处理后,再在700~1030℃进行低温热等静压处理3~6h,经酸洗脱模,制得钛基复合材料。本发明降低了热等静压制备钛基复合材料的制备温度,避免了二次复压和钛合金包套,提高了制备效率,可以避免增强相尺寸长大,可以促进基体晶粒细化与等轴化,有利于提高复合材料性能;同时降低了热等静压过程中Ti‑Fe扩散程度,可以实现钛基复合材料制备成形一体化。
-
-
-
-
-
-
-
-
-