-
公开(公告)号:CN118186538A
公开(公告)日:2024-06-14
申请号:CN202410441181.5
申请日:2024-04-12
Applicant: 哈尔滨工业大学 , 太原理工大学 , 山西银光华盛镁业股份有限公司 , 中国电子科技集团公司第三十八研究所
Abstract: 一种超声辅助的镁及镁合金表面均匀超低电阻导电涂层的制备方法,涉及一种镁及镁合金表面导电涂层的制备方法。本发明采用超声辅助微弧氧化技术,在镁及其合金表面原位构建超低电阻导电纳米涂层可以有效抑制微弧氧化过程中镁合金中晶粒长大;另一反面,超声场可加速溶液中电解质运动,可加速复杂的反应过程,进而获得均匀致密的微弧氧化纳米涂层。在涂层中形成包含硅掺杂纳米氧化镁相,实现导电。本发明具有操作简便、效率高、环保等诸多优势,为科学研究与工程应用提供了良好的思路与方法,为拓展镁及其合金在卫星等领域中大规模应用打下坚实的基础。
-
公开(公告)号:CN118326476A
公开(公告)日:2024-07-12
申请号:CN202410441182.X
申请日:2024-04-12
Applicant: 哈尔滨工业大学 , 山西银光华盛镁业股份有限公司 , 太原理工大学 , 中国电子科技集团公司第三十八研究所
Abstract: 一种镁及镁合金表面纳米导电涂层的制备方法,一种导电涂层的制备方法。为了解决镁合金表面轻质防腐涂层导电性差的问题。本发明采用液相等离子体辅助氧化技术,在镁及其合金表面原位构建导电纳米涂层,通过特殊前处理工艺,实现镁及其合金表面电场均匀分布,进一步在氧化过程中引入丙三醇和苯酚添加剂,在涂层中形成包含硅掺杂纳米氧化镁相,实现导电。本发明具有操作简便、效率高、环保等诸多优势,为科学研究与工程应用提供了良好的思路与方法,为拓展镁及其合金在航空航天、武器装备等领域中大规模应用打下坚实的基础。
-
公开(公告)号:CN118186513A
公开(公告)日:2024-06-14
申请号:CN202410441180.0
申请日:2024-04-12
Applicant: 哈尔滨工业大学 , 太原理工大学 , 山西银光华盛镁业股份有限公司 , 中国电子科技集团公司第三十八研究所
Abstract: 一种复杂形状镁及镁合金构件表面导电耐腐蚀涂层的制备方法,涉及一种镁及镁合金构件表面涂层的制备方法。本发明为了解决现有的微弧氧化制备的抗腐蚀涂层的导电性差和复杂形状结构件表面涂层生长不均匀的问题,本发明采用象形工装微弧氧化技术,在复杂形状镁合金表面构建具有优异导电性能的均匀微弧氧化涂层。通过阴极的特种象形设计、电解液成分设计、电参数控制及气体搅拌辅助技术,获得以掺杂纳米氧化镁为主相的导电微弧氧化涂层。
-
公开(公告)号:CN115852196B
公开(公告)日:2024-03-29
申请号:CN202211485682.0
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种碳化钛纳米颗粒增强镁基复合材料及其制备方法,所述方法:用水将碳化钛纳米颗粒与盐分散均匀,经烘干,得到碳化钛纳米颗粒与盐的混合物;将碳化钛纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁合金并使镁合金熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,得到复合材料;将复合材料进行热变形,得到碳化钛纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下镁合金熔体的氧化燃烧,不采用机械搅拌,也能实现碳化钛纳米颗粒与镁合金熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN115852196A
公开(公告)日:2023-03-28
申请号:CN202211485682.0
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种碳化钛纳米颗粒增强镁基复合材料及其制备方法,所述方法:用水将碳化钛纳米颗粒与盐分散均匀,经烘干,得到碳化钛纳米颗粒与盐的混合物;将碳化钛纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁合金并使镁合金熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,得到复合材料;将复合材料进行热变形,得到碳化钛纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下镁合金熔体的氧化燃烧,不采用机械搅拌,也能实现碳化钛纳米颗粒与镁合金熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN115673312A
公开(公告)日:2023-02-03
申请号:CN202211485701.X
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种纳米颗粒增强镁基复合材料及其制备方法,所述方法包括如下步骤:用水将纳米颗粒与盐分散均匀,得到纳米颗粒盐溶液;将纳米颗粒盐溶液烘干,得到纳米颗粒与盐的混合物;将纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁并使镁熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,制得纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下纳米颗粒和镁熔体的氧化燃烧,不采用机械搅拌,也能实现纳米颗粒与镁熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN113881995A
公开(公告)日:2022-01-04
申请号:CN202111281577.0
申请日:2021-11-01
Applicant: 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开一种冷板风道内部微弧氧化的方法,涉及冷板表面工程技术领域,包括以下步骤:(1)将冷板清洗去油,然后在非微弧氧化区域喷涂可剥漆;(2)将冷板置于微弧氧化工装上;(3)调节电源参数进行微弧氧化。本发明的有益效果在于:采用本发明中的微弧氧化工装不仅解决了超窄间隙电力线屏蔽问题,有效确保了超窄间隙内的电场分布高均匀性,而且能够提高微弧氧化膜层质量均匀性等,从而确保产品微弧氧化质量满足应用需求。按照所述方法制备的微弧氧化膜层,具有耐至少192h的酸性盐雾能力,远超普通微弧氧化膜层96h的耐盐雾腐蚀能力。
-
公开(公告)号:CN109604758B
公开(公告)日:2020-11-10
申请号:CN201910031870.8
申请日:2019-01-14
Applicant: 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种铜铝复合液冷组件的钎焊工艺。首先包含真空钎焊工艺装置,该装置包括定位框架机构和加压机构。真空钎焊操作步骤如下:(1)对铜铝板和铝盖板分别进行碱洗、酸洗、冷水热水清洗处理;(2)对焊片进行打磨、清理,焊片为铝铜硅镍镁焊片,熔点为490℃~535℃;(3)将清理好的焊片放置在铜铝板和铝盖板两个结构件的接触面之间;(4)将预置焊片的钎焊零件装入真空钎焊装置中;(5)在真空钎焊炉内分别进行四个阶段的加热保温,完成钎焊,得到合格的铜铝复合液冷组件焊接件。使用本发明真空钎焊装置实现抵消热循环下钎焊零件的铜铝膨胀系数不匹配带来的应力;实现真空钎焊后的铜铝复合液冷组件的平面度小于0.2mm。
-
公开(公告)号:CN110561080B
公开(公告)日:2020-08-28
申请号:CN201910787776.5
申请日:2019-08-23
Applicant: 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开一种高密度组件多级盲插智能装配装置及盲插方法,包括三维伺服运动平台、精密光学平台、TR组件抓取单元、激光扫描单元,三维伺服运动平台安装于精密光学平台上,TR组件抓取单元与激光扫描单元均安装在三维伺服运动平台上,三维伺服运动平台用于控制TR组件抓取单元及激光扫描单元在三维空间内的运动;天线结构放置在精密光学平台上,TR组件抓取单元抓取TR组件并在激光扫描单元的定位以及三维伺服运动平台的移动下实现天线结构和TR组件的盲插。本发明提能够自动检测连接器盲插孔位的位置和深度;在盲配连接器盲插装配过程中,适应不同平台、不同阵面规模的盲插孔位检测和定位,为盲插装配过程提供参考。
-
公开(公告)号:CN110561080A
公开(公告)日:2019-12-13
申请号:CN201910787776.5
申请日:2019-08-23
Applicant: 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开一种高密度组件多级盲插智能装配装置及盲插方法,包括三维伺服运动平台、精密光学平台、TR组件抓取单元、激光扫描单元,三维伺服运动平台安装于精密光学平台上,TR组件抓取单元与激光扫描单元均安装在三维伺服运动平台上,三维伺服运动平台用于控制TR组件抓取单元及激光扫描单元在三维空间内的运动;天线结构放置在精密光学平台上,TR组件抓取单元抓取TR组件并在激光扫描单元的定位以及三维伺服运动平台的移动下实现天线结构和TR组件的盲插,本发明提能够自动检测连接器盲插孔位的位置和深度;在盲配连接器盲插装配过程中,适应不同平台、不同阵面规模的盲插孔位检测和定位,为盲插装配过程提供参考。
-
-
-
-
-
-
-
-
-