一种细粒度专家行为模仿学习方法、装置、介质及终端

    公开(公告)号:CN115688858B

    公开(公告)日:2024-02-09

    申请号:CN202211285500.5

    申请日:2022-10-20

    Abstract: 本发明公开了一种细粒度专家行为模仿学习方法、装置、介质及终端,方法包括,获取智能体的当前环境状态信息,将当前环境状态信息输入到预设预测网络模型中,以得到预测信息,根据预测信息控制智能体执行相应动作,采集任务完成情况信息和当前动作的状态信息;根据动作的状态信息计算单次奖励值,根据任务完成情况信息计算任务奖励值;根据单次奖励值及任务奖励值训练预设预测网络模型,将任务奖励值和每局若干单次奖励值相加,得到总奖励值,当总奖励值大于阈值时,完成对预设预测网络模型的训练并将输出的策略返回,上述方法降低了训练难度、提高了训练效率,无需采集大量专家数据即可在高维状态、动作空间中学习到接近专家行为模式的策略。

    一种细粒度专家行为模仿学习方法、装置、介质及终端

    公开(公告)号:CN115688858A

    公开(公告)日:2023-02-03

    申请号:CN202211285500.5

    申请日:2022-10-20

    Abstract: 本发明公开了一种细粒度专家行为模仿学习方法、装置、介质及终端,方法包括,获取智能体的当前环境状态信息,将当前环境状态信息输入到预设预测网络模型中,以得到预测信息,根据预测信息控制智能体执行相应动作,采集任务完成情况信息和当前动作的状态信息;根据动作的状态信息计算单次奖励值,根据任务完成情况信息计算任务奖励值;根据单次奖励值及任务奖励值训练预设预测网络模型,将任务奖励值和每局若干单次奖励值相加,得到总奖励值,当总奖励值大于阈值时,完成对预设预测网络模型的训练并将输出的策略返回,上述方法降低了训练难度、提高了训练效率,无需采集大量专家数据即可在高维状态、动作空间中学习到接近专家行为模式的策略。

    多智能体信息融合方法、装置、电子设备及可读存储介质

    公开(公告)号:CN114139637B

    公开(公告)日:2022-11-04

    申请号:CN202111470623.1

    申请日:2021-12-03

    Abstract: 本申请公开了一种多智能体信息融合方法、装置、电子设备及可读存储介质。其中,方法包括构建操作预测网络模型和门控注意力机制模型,门控注意力机制模型根据不同来源信息以交互过程中学习的比例进行融合,且各智能体基于自身数据和通信信息融合结果共同确定是否接收通信信息融合结果。将多智能体应用模拟环境的状态信息输入至操作预测网络模型,得到各智能体的预测动作;根据多智能体应用模拟环境基于各智能体的预测动作信息输出的各预测动作得分和下一时刻的状态信息、每个智能体的价值评估信息,基于门控注意力机制模型的强化学习算法更新操作预测网络模型,循环训练操作预测网络模型直至收敛。本申请提升了多智能体信息融合效果。

Patent Agency Ranking