基于深度低秩自适应的图像复原方法、装置、设备及介质

    公开(公告)号:CN118822856A

    公开(公告)日:2024-10-22

    申请号:CN202410804564.4

    申请日:2024-08-13

    Abstract: 本发明属于图像处理领域,提供了一种基于深度低秩自适应的图像复原方法、装置、设备及介质。方法包括:获取预览图像及其关联的采样值,采样值根据用户选择的恢复任务和压缩比率获得,预览图像由原始图像按照压缩比率进行对应任务的压缩所得;将采样值、预览图像和原始图像作为训练集,以训练具有低秩自适应的深度网络展开模型,深度网络展开模型包括用于投影的梯度下降模块、用于特征提取和去噪的提取器层组的去噪器,提取层组包括由卷积模块构成的神经网络和线性注意力网络构成的神经网络;将待恢复图像输入到训练好的所述多模块深度网络展开模型中,以计算输出重建图像;因此本发明可以解决压缩图像恢复遇到的问题。

    用于轻量化部署的剪枝式图像压缩感知方法及系统

    公开(公告)号:CN115797477B

    公开(公告)日:2023-05-16

    申请号:CN202310044359.8

    申请日:2023-01-30

    Abstract: 本发明涉及用于轻量化部署的剪枝式图像压缩感知方法及系统。其中的方法包括:获取预览图像和与预览图像关联的采样值,将预览图像输入到基于投影梯度算法和深度神经网络的图像压缩感知模型中以计算输出重建图像,其中,深度神经网络包括:用于特征提取的提取层组、用于图像重建的重建层组和设置有两者之间的第三卷积层,进行模型迭代训练时对图像压缩感知模型进行剪枝操作以获得理想压缩比例。本发明使用模型剪枝的方法对深度展开式网络进行模型规模的压缩,使其在计算复杂度和模型规模上达到轻量化部署需求同时保持良好的图像重建质量,并将其部署到移动端设备上,实现了图像的快速采样、信号传递以及节约存储。

    用于轻量化部署的剪枝式图像压缩感知方法及系统

    公开(公告)号:CN115797477A

    公开(公告)日:2023-03-14

    申请号:CN202310044359.8

    申请日:2023-01-30

    Abstract: 本发明涉及用于轻量化部署的剪枝式图像压缩感知方法及系统。其中的方法包括:获取预览图像和与预览图像关联的采样值,将预览图像输入到基于投影梯度算法和深度神经网络的图像压缩感知模型中以计算输出重建图像,其中,深度神经网络包括:用于特征提取的提取层组、用于图像重建的重建层组和设置有两者之间的第三卷积层,进行模型迭代训练时对图像压缩感知模型进行剪枝操作以获得理想压缩比例。本发明使用模型剪枝的方法对深度展开式网络进行模型规模的压缩,使其在计算复杂度和模型规模上达到轻量化部署需求同时保持良好的图像重建质量,并将其部署到移动端设备上,实现了图像的快速采样、信号传递以及节约存储。

Patent Agency Ranking