一种基于改进蚁群算法和椭圆碰撞锥推演模型的无人水面艇双层避碰方法

    公开(公告)号:CN110320907A

    公开(公告)日:2019-10-11

    申请号:CN201910476197.9

    申请日:2019-06-03

    Abstract: 本发明提供一种基于改进蚁群算法和椭圆碰撞锥推演模型的无人水面艇双层避碰方法,首先,利用MKLINK图论技术为无人艇生成海上环境地图模型,然后对蚁群算法的状态转移概率进行改进优化出无人艇的全局最短路径,同时判断是否会有运动碍航物相遇而来,有则调用局部层的椭圆锥碰撞推演算法实时调整无人艇的动态路径。最后,将两种智能避碰方法通过滚动协调配合的原理进行耦合,形成无人水面艇海上航行时的双层智能避碰方法。本发明通过无人水面艇路径规划技术和基于椭圆碰撞锥推演模型的局部避碰技术滚动协同配合,实现无人艇在执行搜救、勘察作业等任务的时候能够自主搜索全局路径和调整局部避开运动碍航物的路径。

    一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法

    公开(公告)号:CN111538242A

    公开(公告)日:2020-08-14

    申请号:CN202010396064.3

    申请日:2020-05-12

    Abstract: 本发明涉及船舶动力定位控制领域,具体涉及的是一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法。本发明将动力定位船的三自由度非线性模型转换成在不同状态空间下的几个线性子系统,建立T-S模糊模型。同时考虑由外界环境及系统模型内部参数不确定性所产生的干扰,设计干扰观测器估计干扰项。在动力定位船的T-S模糊模型和干扰估计的基础上,设计T-S模糊控制器,并考虑推进系统的饱和特性,提出了饱和补偿系统,最终实现船的动力定位T-S模糊抗饱和控制。本发明将复杂的动力定位船的非线性模型线性化,转化成由几个线性子系统组成的T-S模糊模型,为控制器的设计提供了便利条件,可以选择更多样的线性控制方法,简化了计算。

    一种无人艇路径跟踪导引策略和扰动补偿方法

    公开(公告)号:CN111045332A

    公开(公告)日:2020-04-21

    申请号:CN201911372150.4

    申请日:2019-12-27

    Abstract: 本发明涉及一种无人艇路径跟踪导引策略和扰动补偿方法,属于无人艇路径跟踪控制技术领域;包括从运动学角度出发,提出基于流干扰观测器补偿和障碍李雅普诺夫函数的改进型ILOS导引算法;将无人艇的位置误差转化为Serret-Frenet坐标系下的位置误差,然后分别设计纵向导引律、艏向导引律和虚拟目标运动导引律,来镇定无人艇的位置误差并计算出期望艏向角;针对风浪等不确定环境带来的控制干扰,设计二阶扰动观测器估计已知上界下的环境扰动;结合反步法、滑模变结构自适应策略实现无人艇的纵向速度和艏向跟踪;通过李雅普诺夫稳定性定理得到闭环系统最终一致有界,理论上证明了无人艇能够跟踪期望路径,并通过仿真实验验证了算法的有效性。本发明应用前景广阔。

    一种基于改进蚁群算法和椭圆碰撞锥推演模型的无人水面艇双层避碰方法

    公开(公告)号:CN110320907B

    公开(公告)日:2022-07-15

    申请号:CN201910476197.9

    申请日:2019-06-03

    Abstract: 本发明提供一种基于改进蚁群算法和椭圆碰撞锥推演模型的无人水面艇双层避碰方法,首先,利用MKLINK图论技术为无人艇生成海上环境地图模型,然后对蚁群算法的状态转移概率进行改进优化出无人艇的全局最短路径,同时判断是否会有运动碍航物相遇而来,有则调用局部层的椭圆锥碰撞推演算法实时调整无人艇的动态路径。最后,将两种智能避碰方法通过滚动协调配合的原理进行耦合,形成无人水面艇海上航行时的双层智能避碰方法。本发明通过无人水面艇路径规划技术和基于椭圆碰撞锥推演模型的局部避碰技术滚动协同配合,实现无人艇在执行搜救、勘察作业等任务的时候能够自主搜索全局路径和调整局部避开运动碍航物的路径。

    一种基于二阶滑模控制的气垫船路径跟踪控制方法

    公开(公告)号:CN107450318B

    公开(公告)日:2020-07-28

    申请号:CN201710717234.1

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于二阶滑模控制的气垫船路径跟踪控制方法,属于路径跟踪控制技术领域,尤其涉及二阶滑模控制方法在气垫船路径跟踪上的应用。一种基于二阶滑模控制的气垫船路径跟踪控制方法,首先建立气垫船运动三自由度数学模型;然后通过二阶滑模点对点位置控制器计算纵倾力;其次通过二阶滑模艏向控制器计算艏向力矩;最后将纵倾力矩与艏向力矩用于气垫船路径跟踪控制。本发明将二阶滑模控制方法运用到气垫船路径跟踪控制中,主要解决了气垫船模型高度非线性和不确定性,以及易受外界环境干扰等问题。

    一种基于强化学习的全垫升气垫船航迹跟踪控制方法

    公开(公告)号:CN108594639A

    公开(公告)日:2018-09-28

    申请号:CN201810261836.5

    申请日:2018-03-28

    CPC classification number: G05B13/027 G05B13/045 G05D1/0206

    Abstract: 本发明提供的是一种基于强化学习的全垫升气垫船航迹跟踪控制方法。1.建立全垫升气垫船四自由度运动学模型和动力学模型;2.运用PID控制实现全垫升气垫船的航向控制;3.运用滑模控制实现全垫升气垫船的航速控制。4.运用LOS法实现全垫升气垫船的航迹跟踪;5.运用RBF神经网络实现参数调优,最终实现理想的全垫升气垫船航迹跟踪控制。本发明所述的航迹跟踪控制控制方法,不依赖于被控对象和环境,方法实现简单,抗干扰能力强,控制效果出色,相较于传统的航迹跟踪控制器其算法更加智能,自适应性更强,鲁棒性能更好,跟踪效果更加平滑,跟踪误差小。

    一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法

    公开(公告)号:CN111538242B

    公开(公告)日:2023-01-03

    申请号:CN202010396064.3

    申请日:2020-05-12

    Abstract: 本发明涉及船舶动力定位控制领域,具体涉及的是一种不确定性估计和饱和补偿的动力定位T‑S模糊抗饱和控制方法。本发明将动力定位船的三自由度非线性模型转换成在不同状态空间下的几个线性子系统,建立T‑S模糊模型。同时考虑由外界环境及系统模型内部参数不确定性所产生的干扰,设计干扰观测器估计干扰项。在动力定位船的T‑S模糊模型和干扰估计的基础上,设计T‑S模糊控制器,并考虑推进系统的饱和特性,提出了饱和补偿系统,最终实现船的动力定位T‑S模糊抗饱和控制。本发明将复杂的动力定位船的非线性模型线性化,转化成由几个线性子系统组成的T‑S模糊模型,为控制器的设计提供了便利条件,可以选择更多样的线性控制方法,简化了计算。

    一种基于强化学习的全垫升气垫船航迹跟踪控制方法

    公开(公告)号:CN108594639B

    公开(公告)日:2020-12-22

    申请号:CN201810261836.5

    申请日:2018-03-28

    Abstract: 本发明提供的是一种基于强化学习的全垫升气垫船航迹跟踪控制方法。1.建立全垫升气垫船四自由度运动学模型和动力学模型;2.运用PID控制实现全垫升气垫船的航向控制;3.运用滑模控制实现全垫升气垫船的航速控制。4.运用LOS法实现全垫升气垫船的航迹跟踪;5.运用RBF神经网络实现参数调优,最终实现理想的全垫升气垫船航迹跟踪控制。本发明所述的航迹跟踪控制控制方法,不依赖于被控对象和环境,方法实现简单,抗干扰能力强,控制效果出色,相较于传统的航迹跟踪控制器其算法更加智能,自适应性更强,鲁棒性能更好,跟踪效果更加平滑,跟踪误差小。

    一种基于二阶滑模控制的气垫船路径跟踪控制方法

    公开(公告)号:CN107450318A

    公开(公告)日:2017-12-08

    申请号:CN201710717234.1

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于二阶滑模控制的气垫船路径跟踪控制方法,属于路径跟踪控制技术领域,尤其涉及二阶滑模控制方法在气垫船路径跟踪上的应用。一种基于二阶滑模控制的气垫船路径跟踪控制方法,首先建立气垫船运动三自由度数学模型;然后通过二阶滑模点对点位置控制器计算纵倾力;其次通过二阶滑模艏向控制器计算艏向力矩;最后将纵倾力矩与艏向力矩用于气垫船路径跟踪控制。本发明将二阶滑模控制方法运用到气垫船路径跟踪控制中,主要解决了气垫船模型高度非线性和不确定性,以及易受外界环境干扰等问题。

Patent Agency Ranking