一种热式风速传感器恒功率调节与精度补偿方法

    公开(公告)号:CN110244077B

    公开(公告)日:2021-03-30

    申请号:CN201910480458.4

    申请日:2019-06-04

    Abstract: 本发明提供的是一种热式风速传感器恒功率调节与精度补偿方法。(1)采用恒定功率热式风速传感器检测得到初步数据;(2)采用PID算法结合人工鱼群算法对恒定功率进行自适应控制;(3)采用二级放大电路将得到的微弱信号进行信号调理;(4)采用强化学习策略迭代方法建立精度补偿修正曲线。本发明的人工鱼群优化PID参数方法适用于恒定功率,恒压,恒流,恒温差等风速传感器的优化环节,自适应能力更强;基于强化学习策略迭代方法建立的精度补偿修正曲线不依赖被控对象的所处环境,鲁棒性能更好,不会限于局部最优,精度有所提高。

    一种基于模糊PID控制算法的温度控制器

    公开(公告)号:CN111665714A

    公开(公告)日:2020-09-15

    申请号:CN202010396061.X

    申请日:2020-05-12

    Abstract: 本发明一种基于模糊PID控制算法的温度控制器,所述模糊PID控制算法包括如下步骤:步骤一:通过温度传感器对制冷机箱体内部的主要部分采集温度,并且计算其平均值,作为系统反馈环节的输入;步骤二:通过控制器对制冷机的预设制冷温度进行设置,作为系统的输入;步骤三:控制器根据预设制冷温度与步骤一中系统反馈回来的温度的偏差大小并采用模糊PID算法对旋转式室温磁制冷机的制冷装置进行控制,使其在不同的制冷区域采用不同的速度进行旋转制冷。本发明针对旋转式室温磁制冷机的控制器进行设计,通过对制冷区与非制冷区的调速控制,使得在制冷区速度缓慢,非制冷区速度增加,提高了制冷效率,增强了制冷效果。

    一种基于ARMA模型修正的改进灰色Elman神经网络气垫船运动预报方法

    公开(公告)号:CN111581832B

    公开(公告)日:2023-01-03

    申请号:CN202010396063.9

    申请日:2020-05-12

    Abstract: 本发明涉及一种运动预报的方法,具体涉及的是一种基于ARMA模型修正的改进灰色Elman神经网络气垫船运动预报方法。本发明将获得的气垫船运动数据进行加权滑动平均法预处理,建立改进的灰色GM(1,1)预测模型,将灰色预测模型的残差序列利用基于信息熵改进的Elman神经网络进行训练,反复训练得到预测误差序列与灰色预测值相加得到预测模型最终预测值;对于最终预测值采用ARMA模型修正误差,提高组合预测模型的预测精度;本发明采用加权滑动平均法对数据进行处理,减小原始数据的干扰影响,在传统Elman神经网络模型的基础上加入信息熵加权算法,排除每个输入数据对输出结果有相同影响。

    一种基于模糊PID控制算法的温度控制器

    公开(公告)号:CN111665714B

    公开(公告)日:2022-09-27

    申请号:CN202010396061.X

    申请日:2020-05-12

    Abstract: 本发明一种基于模糊PID控制算法的温度控制器,所述模糊PID控制算法包括如下步骤:步骤一:通过温度传感器对制冷机箱体内部的主要部分采集温度,并且计算其平均值,作为系统反馈环节的输入;步骤二:通过控制器对制冷机的预设制冷温度进行设置,作为系统的输入;步骤三:控制器根据预设制冷温度与步骤一中系统反馈回来的温度的偏差大小并采用模糊PID算法对旋转式室温磁制冷机的制冷装置进行控制,使其在不同的制冷区域采用不同的速度进行旋转制冷。本发明针对旋转式室温磁制冷机的控制器进行设计,通过对制冷区与非制冷区的调速控制,使得在制冷区速度缓慢,非制冷区速度增加,提高了制冷效率,增强了制冷效果。

    一种基于ARMA模型修正的改进灰色Elman神经网络气垫船运动预报方法

    公开(公告)号:CN111581832A

    公开(公告)日:2020-08-25

    申请号:CN202010396063.9

    申请日:2020-05-12

    Abstract: 本发明涉及一种运动预报的方法,具体涉及的是一种基于ARMA模型修正的改进灰色Elman神经网络气垫船运动预报方法。本发明将获得的气垫船运动数据进行加权滑动平均法预处理,建立改进的灰色GM(1,1)预测模型,将灰色预测模型的残差序列利用基于信息熵改进的Elman神经网络进行训练,反复训练得到预测误差序列与灰色预测值相加得到预测模型最终预测值;对于最终预测值采用ARMA模型修正误差,提高组合预测模型的预测精度;本发明采用加权滑动平均法对数据进行处理,减小原始数据的干扰影响,在传统Elman神经网络模型的基础上加入信息熵加权算法,排除每个输入数据对输出结果有相同影响。

    一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法

    公开(公告)号:CN111538242A

    公开(公告)日:2020-08-14

    申请号:CN202010396064.3

    申请日:2020-05-12

    Abstract: 本发明涉及船舶动力定位控制领域,具体涉及的是一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法。本发明将动力定位船的三自由度非线性模型转换成在不同状态空间下的几个线性子系统,建立T-S模糊模型。同时考虑由外界环境及系统模型内部参数不确定性所产生的干扰,设计干扰观测器估计干扰项。在动力定位船的T-S模糊模型和干扰估计的基础上,设计T-S模糊控制器,并考虑推进系统的饱和特性,提出了饱和补偿系统,最终实现船的动力定位T-S模糊抗饱和控制。本发明将复杂的动力定位船的非线性模型线性化,转化成由几个线性子系统组成的T-S模糊模型,为控制器的设计提供了便利条件,可以选择更多样的线性控制方法,简化了计算。

    一种气垫船垫升系统模型构建方法

    公开(公告)号:CN111666722B

    公开(公告)日:2023-01-03

    申请号:CN202010396065.8

    申请日:2020-05-12

    Abstract: 本发明涉及的是一种用于仿真实验的模型建立方法,具体涉及的是一种气垫船垫升系统模型构建方法。本发明包括步骤一:建立垫升风机方程,包含气体流量、风机转速和风机压力;步骤二:计算气垫体积变化率,建立波浪泵气方程,包含气体流量、各气室压力、采样时间;步骤三:计算围裙的泄流面积,得到围裙的泄流方程,包含围裙泄流量、各气室压力。本发明不同位置围裙柔性囊具有不同的功能作用:纵向分隔裙、横向分隔裙设计向外倾斜,有利于越过障碍物,而且不会出现兜水现象;艏部围裙囊遇障碍物向内倾斜起减震作用;船舷围裙能够向后倾斜以便减少航行阻力。

    基于灰色预测混合遗传算法‑PID全垫升气垫船航向控制方法

    公开(公告)号:CN106708044A

    公开(公告)日:2017-05-24

    申请号:CN201611164791.7

    申请日:2016-12-16

    CPC classification number: G05D1/0206 G05B13/042

    Abstract: 本发明提供的是一种基于灰色预测混合遗传算法‑PID全垫升气垫船航向控制方法。用位置参考系统测得全垫升气垫船的实际位置,用姿态参考系统测得全垫升气垫船的实际艏向姿态;进行灰色误差预测,即建立新陈代谢模型、通过实际位置和实际艏向姿态预测未来行为数据得到超前控制值;PID控制器将输入的期望位置及艏向姿态与灰色误差预测得到的超前控制值做比较,并经过解算得到误差信号用于全垫升气垫船航迹控制系统的控制;PID控制器利用混合遗传算法在线整定PID控制器。本发明对气垫船航向控制有很强的适应性,并在各种环境下都能得到很好的效果。能减轻驾驶员的操纵负担,同时提高控制品质。

    一种无人艇-主机-喷水推进器的匹配方法

    公开(公告)号:CN106484963A

    公开(公告)日:2017-03-08

    申请号:CN201610839955.5

    申请日:2016-09-21

    Abstract: 本发明提供一种无人艇-主机-喷水推进器的匹配方法,包括:获取无人艇的航速和无人艇的阻力,同时,获取喷水推进器喷射角和泵的转速;当无人艇匀速直航时通过匹配方法来获得无人艇柴油机和喷水推进器的匹配点;当无人艇加速度不为零时,完成无人艇过渡过程的匹配。本发明通过对无人艇直航和加速过程的研究分析,得到无人艇的高效工作匹配点。使得柴油机发出的功率被喷水推进器完全吸收利用,同时喷水推进器的效率也得到提高。达到无人艇高效航行和节省柴油机燃料的目的。

    一种不确定性估计和饱和补偿的动力定位T-S模糊抗饱和控制方法

    公开(公告)号:CN111538242B

    公开(公告)日:2023-01-03

    申请号:CN202010396064.3

    申请日:2020-05-12

    Abstract: 本发明涉及船舶动力定位控制领域,具体涉及的是一种不确定性估计和饱和补偿的动力定位T‑S模糊抗饱和控制方法。本发明将动力定位船的三自由度非线性模型转换成在不同状态空间下的几个线性子系统,建立T‑S模糊模型。同时考虑由外界环境及系统模型内部参数不确定性所产生的干扰,设计干扰观测器估计干扰项。在动力定位船的T‑S模糊模型和干扰估计的基础上,设计T‑S模糊控制器,并考虑推进系统的饱和特性,提出了饱和补偿系统,最终实现船的动力定位T‑S模糊抗饱和控制。本发明将复杂的动力定位船的非线性模型线性化,转化成由几个线性子系统组成的T‑S模糊模型,为控制器的设计提供了便利条件,可以选择更多样的线性控制方法,简化了计算。

Patent Agency Ranking