一种工业系统中缺失的时序数据的填充方法

    公开(公告)号:CN113591954B

    公开(公告)日:2023-10-27

    申请号:CN202110818499.7

    申请日:2021-07-20

    Abstract: 本发明公开了一种工业系统中缺失的时序数据的填充方法,包括步骤一:数据预处理;步骤二:针对缺失的多元时序数据,以边界平衡生成对抗网络BEGAN模型为基础,构建生成对抗网络模型BiGRU‑BEGAN;步骤三:训练BiGRU‑BEGAN网络模型;步骤四:用训练好的BiGRU‑BEGAN模型生成完整的人工数据并填充原始缺失数据。本发明通过生成对抗网络与双向循环神经网络结合的模型,最大化利用真实存在的数据信息,生成符合原始缺失数据特征分布规律的完整人工数据,再将缺失数据填充完整。利用填充好的完整数据进行后续的故障分类任务,增加缺失数据的分类准确率。

    一种工业故障诊断非平衡时序数据扩充方法

    公开(公告)号:CN112328588A

    公开(公告)日:2021-02-05

    申请号:CN202011352099.3

    申请日:2020-11-27

    Abstract: 本发明公开了一种工业故障诊断非平衡时序数据扩充方法,步骤一:准备训练数据集;步骤二:构建GRU‑BEGAN的网络结构;步骤三:训练构建的GRU‑BEGAN网络模型;步骤四:根据训练好的GRU‑BEGAN生成对抗网络模型去生成小样本类型的人工数据,训练完成后的模型输入简单随机变量z|t,生成符合时间t的时序数据,将生成的数据集扩充至原始数据的小样本类型中,根据扩充后的数据集建立1D/2D‑CNN故障诊断模型。本发明在模型结构和损失函数上的改进使得模型收敛更快、数据质量更高,利用端到端的GRU‑BEGAN模型去训练故障数据中小样本时序数据集,得到生成的人工数据去增强原始数据集,提高故障诊断模型精确度。

    一种工业系统中缺失的时序数据的填充方法

    公开(公告)号:CN113591954A

    公开(公告)日:2021-11-02

    申请号:CN202110818499.7

    申请日:2021-07-20

    Abstract: 本发明公开了一种工业系统中缺失的时序数据的填充方法,包括步骤一:数据预处理;步骤二:针对缺失的多元时序数据,以边界平衡生成对抗网络BEGAN模型为基础,构建生成对抗网络模型BiGRU‑BEGAN;步骤三:训练BiGRU‑BEGAN网络模型;步骤四:用训练好的BiGRU‑BEGAN模型生成完整的人工数据并填充原始缺失数据。本发明通过生成对抗网络与双向循环神经网络结合的模型,最大化利用真实存在的数据信息,生成符合原始缺失数据特征分布规律的完整人工数据,再将缺失数据填充完整。利用填充好的完整数据进行后续的故障分类任务,增加缺失数据的分类准确率。

    一种工业故障诊断非平衡时序数据扩充方法

    公开(公告)号:CN112328588B

    公开(公告)日:2022-07-15

    申请号:CN202011352099.3

    申请日:2020-11-27

    Abstract: 本发明公开了一种工业故障诊断非平衡时序数据扩充方法,步骤一:准备训练数据集;步骤二:构建GRU‑BEGAN的网络结构;步骤三:训练构建的GRU‑BEGAN网络模型;步骤四:根据训练好的GRU‑BEGAN生成对抗网络模型去生成小样本类型的人工数据,训练完成后的模型输入简单随机变量z|t,生成符合时间t的时序数据,将生成的数据集扩充至原始数据的小样本类型中,根据扩充后的数据集建立1D/2D‑CNN故障诊断模型。本发明在模型结构和损失函数上的改进使得模型收敛更快、数据质量更高,利用端到端的GRU‑BEGAN模型去训练故障数据中小样本时序数据集,得到生成的人工数据去增强原始数据集,提高故障诊断模型精确度。

Patent Agency Ranking