-
公开(公告)号:CN109614853A
公开(公告)日:2019-04-12
申请号:CN201811273872.X
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN107679461A
公开(公告)日:2018-02-09
申请号:CN201710816499.7
申请日:2017-09-12
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明设计了一种基于对偶综合-解析字典学习的行人再识别方法,其主要技术特点是:从行人再识别数据中提取行人图像特征;采用局部Fisher判决分析方法将不同摄像机视角下的行人图像特征投影到公共特征空间;运用对偶综合-解析字典学习算法,在公共特征空间中学习对偶综合字典和对偶解析字典;建立行人匹配模型,并利用改进余弦公式进行行人距离计算。本发明设计合理,其通过在原始对偶综合字典学习中引入对偶解析字典,解析字典拥有判决能力,提高了综合字典的数据表示能力,使得字典能够更有效的表示数据的本征结构,获得了有效的再识别性能。
-
公开(公告)号:CN109614853B
公开(公告)日:2023-05-05
申请号:CN201811273872.X
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06N3/045 , G06N3/0464 , G06N3/082 , G06V10/82 , G06V40/10
Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN108846446A
公开(公告)日:2018-11-20
申请号:CN201810721733.2
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于多路径密集特征融合全卷积网络的目标检测方法,利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;利用自底向上的旁路连接进行自下而上的特征融合;利用自顶向下的密集旁路连接进行自上而下的密集特征融合;构建不同大小和长宽比的目标候选框;利用二分类器减少目标候选框中的简单背景样本,并利用多任务损失函数对二分类器、多类别分类器和边界框回归器进行联合优化。本发明基于深度卷积神经网络提取图像特征,利用多路径密集特征融合方法改善特征表达能力,构建了用于目标检测的全卷积网络,提出了减少冗余简单背景样本和多任务损失联合优化的策略,提高了算法的检测精度,获得了良好的目标检测结果。
-
公开(公告)号:CN108846446B
公开(公告)日:2021-10-12
申请号:CN201810721733.2
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于多路径密集特征融合全卷积网络的目标检测方法,利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;利用自底向上的旁路连接进行自下而上的特征融合;利用自顶向下的密集旁路连接进行自上而下的密集特征融合;构建不同大小和长宽比的目标候选框;利用二分类器减少目标候选框中的简单背景样本,并利用多任务损失函数对二分类器、多类别分类器和边界框回归器进行联合优化。本发明基于深度卷积神经网络提取图像特征,利用多路径密集特征融合方法改善特征表达能力,构建了用于目标检测的全卷积网络,提出了减少冗余简单背景样本和多任务损失联合优化的策略,提高了算法的检测精度,获得了良好的目标检测结果。
-
公开(公告)号:CN105491371A
公开(公告)日:2016-04-13
申请号:CN201510800435.9
申请日:2015-11-19
Applicant: 国家新闻出版广电总局广播科学研究院
Abstract: 本发明提出了一种基于梯度幅值相似性的色调映射图像质量评价方法,属于图像处理领域。本发明提出的方法包括步骤:1)计算高动态图像和色调映射器转换之后的色调映射图像的梯度图;2)对高动态图像和色调映射图像所对应的梯度图进行基于人类视觉系统的动态范围调整;3)计算梯度图对之间的相似性,并以色调映射幅值大小作为权值;4)利用对比度、亮度和细节表述计算色调映射图像的自然性值;5)将相似性值和自然性值进行合并。本发明设计合理,其采用能够有效捕捉到图像失真的梯度幅度相似性特征,并且结合了图像的自然性特征(图像看起来必须自然)能够有效地对色调映射图像的质量进行评价,提高了评价性能。
-
-
-
-
-