-
公开(公告)号:CN118627581A
公开(公告)日:2024-09-10
申请号:CN202410753364.0
申请日:2024-06-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/082 , G06N3/045 , G06N3/0499 , G06N3/084
Abstract: 本发明属于人工智能技术领域,涉及一种基于输入激活的大语言模型低秩近似剪枝方法和装置。该方法包括:根据权重和输入激活计算剪枝指标;根据剪枝指标对大语言模型的线性层的每个输出进行局部权重的比较和修剪;使用低秩近似法对剪枝后的大语言模型进行微调以促进大语言模型性能的恢复。本发明能够有效地压缩LLMs,实现了较高的计算效率,在单个前向传播中执行,并且只有很小的内存开销,不仅避免了在局部分层重建过程中计算逆矩阵,而且保持了与幅值剪枝一样的简洁性。