电力机器人全局路径自动规划方法、系统、设备及介质

    公开(公告)号:CN118565486A

    公开(公告)日:2024-08-30

    申请号:CN202411002216.1

    申请日:2024-07-25

    Abstract: 本发明涉及电力机器人技术领域,尤其涉及一种电力机器人全局路径自动规划方法、系统、设备及介质,包括构建稠密点云模型的图表示;根据电力机器人位姿信息和环境特征,为每个路径决策点构建决策条件树;遍历决策条件树的每个条件分支,利用图论算法在稠密点云模型的图表示中求解从电力机器人起点到各个巡检目标的最短路径,生成潜在预选路径集合;基于潜在预选路径集合构建路径依赖网络,确定路径间的条件依赖关系,并利用基于环境感知的动态路径优化算法进行迭代优化,获取最优巡检路径。本发明提出的方法不仅提高了路径规划的效率和适应性,而且增强了机器人在面对环境变化时的决策能力,确保电力机器人能够高效准确地完成巡检任务。

    数字员工AI智能流程编排方法

    公开(公告)号:CN115578729B

    公开(公告)日:2023-03-21

    申请号:CN202211457579.5

    申请日:2022-11-21

    Abstract: 本发明公开了数字员工AI智能流程编排方法,包括:采集带有流程信息的纸质文件的原始图像,对原始图像进行差异灰度化,得到若干差异灰度化图像;对差异灰度化图像进行预设角度的旋转,得到若干旋转灰度化图像;对旋转灰度化图像进行膨胀,利用霍夫变换检测膨胀后每行字符形成的字符直线,得到字符走向图;根据字符走向图对膨胀前的旋转灰度化图像进行透视变换,得到矫正图;提取矫正图中的箭头标识,以箭头标识作为辅助信息对矫正图进行仿射变换,旋转得到还原图,将还原图二值化后输入至字符识别模块进行识别,依次提取流程信息完成编排。本发明可以得到准确的文字走向,避免特殊角度等原因导致的识别错误,有利于提高处理速度和准确性。

    基于图像模型和语言模型的事理关系抽取处理方法及系统

    公开(公告)号:CN114707004B

    公开(公告)日:2022-08-16

    申请号:CN202210569919.7

    申请日:2022-05-24

    Abstract: 本发明提供了一种基于图像模型和语言模型的事理关系抽取处理方法及系统,包括:基于语言模型提取事件类型信息、以及每个事件类型信息所对应的第二事件主体;选中与事件类型信息相对应的第二事件主体,确定所述第一事件主体和所选中的第二事件主体之间的逻辑图像,基于神经网络模型对逻辑图像进行识别得到事件逻辑信息;根据第一事件主体、第二事件主体之间的事件类型信息、事件逻辑信息生成事理关系图谱;确定事理关系图谱中相对应的一维事件类型信息、一维事件逻辑信息,根据一维事件逻辑信息确定相应的第二事件主体为一级动作事件主体;一级动作事件主体和/或二级动作事件主体根据相应的一维事件类型信息和/或二维事件类型信息进行动作。

    基于图像模型和语言模型的事理关系抽取处理方法及系统

    公开(公告)号:CN114707004A

    公开(公告)日:2022-07-05

    申请号:CN202210569919.7

    申请日:2022-05-24

    Abstract: 本发明提供了一种基于图像模型和语言模型的事理关系抽取处理方法及系统,包括:基于语言模型提取事件类型信息、以及每个事件类型信息所对应的第二事件主体;选中与事件类型信息相对应的第二事件主体,确定所述第一事件主体和所选中的第二事件主体之间的逻辑图像,基于神经网络模型对逻辑图像进行识别得到事件逻辑信息;根据第一事件主体、第二事件主体之间的事件类型信息、事件逻辑信息生成事理关系图谱;确定事理关系图谱中相对应的一维事件类型信息、一维事件逻辑信息,根据一维事件逻辑信息确定相应的第二事件主体为一级动作事件主体;一级动作事件主体和/或二级动作事件主体根据相应的一维事件类型信息和/或二维事件类型信息进行动作。

Patent Agency Ranking