-
公开(公告)号:CN110287124B
公开(公告)日:2023-04-25
申请号:CN201910595620.7
申请日:2019-07-03
Applicant: 大连海事大学
Abstract: 本发明公开了一种自动标记软件错误报告并进行严重性识别的方法,包括以下步骤:S1:对软件错误报告进行编码并将错误报告标记为严重或不严重;S2:采用严重报告和不严重报告训练分类器,获得每个输入报告的后验概率,其中后验概率为输入报告分类的概率分布;S3:采用完成训练的分类器对无标记报告的数据集进行分类,并获得该数据集中每个样例的后验概率;S4:根据S3中求得的后验概率求解每个无标记报告的模糊度;S5:将无标记报告按照模糊度的升序排列,选取前k个无标记报告填充到原数据集中扩充数据集,对扩充后的数据集重新训练分类器。
-
公开(公告)号:CN110413792A
公开(公告)日:2019-11-05
申请号:CN201910728451.X
申请日:2019-08-08
Applicant: 大连海事大学
Abstract: 本发明公开了一种高影响力缺陷报告识别方法,本方法将不平衡学习技术与多类分类方法相结合,解决了错误报告组件分类问题。使用四种不平衡处理策略RUS、ROS、SMOTE和Adacost算法来处理数据并获得平衡的数据集。然后使用基于NBM,KNN和SVM分类器的OVO和OVA多类别分类方法对平衡之后的数据集进行错误报告组件分类。通过探究不平衡学习策略和分类别分类算法的不同组合,找到具有错误报告组件分类最佳性能的变体。通过使用错误组件分类来确定为错误报告分配合适的开发人员,从而更好地解决了错误报告的分类问题。该方法不仅可以减少原始训练集的单词维度,提高训练集的质量,也提高错误报告的分类性能。
-
公开(公告)号:CN108898562B
公开(公告)日:2022-04-12
申请号:CN201810652664.4
申请日:2018-06-22
Applicant: 大连海事大学
IPC: G06T5/00
Abstract: 本发明公开了一种基于深度学习的移动设备图像去雾方法,包括以下步骤:获取实时采集的有雾图像;有雾图像输入区域检测网络,逐区域地提取有雾图像特征并输出有雾图像相关的特征图;特征图传入非线性回归网络层,获得有雾图像每个小区域的媒介透射率,得到透射率矩阵;透射率矩阵传入导向滤波模块,输出精细化透射率矩阵;通过透射率矩阵和有雾图的灰度图来计算大气光;通过透射率矩阵恢复所述采集到的有雾图像获得去雾后的图像。本发明通过具有区域检测功能的深度神经网络模型作为去雾方法的主体模型,在训练网络模型时不需要把图像裁剪成固定大小的图像块,扩大了各层的网络节点的感受野,充分考虑到图像中各个区域间的关系。
-
公开(公告)号:CN110287124A
公开(公告)日:2019-09-27
申请号:CN201910595620.7
申请日:2019-07-03
Applicant: 大连海事大学
Abstract: 本发明公开了一种自动标记软件错误报告并进行严重性识别的方法,包括以下步骤:S1:对软件错误报告进行编码并将错误报告标记为严重或不严重;S2:采用严重报告和不严重报告训练分类器,获得每个输入报告的后验概率,其中后验概率为输入报告分类的概率分布;S3:采用完成训练的分类器对无标记报告的数据集进行分类,并获得该数据集中每个样例的后验概率;S4:根据S3中求得的后验概率求解每个无标记报告的模糊度;S5:将无标记报告按照模糊度的升序排列,选取前k个无标记报告填充到原数据集中扩充数据集,对扩充后的数据集重新训练分类器。
-
公开(公告)号:CN108898562A
公开(公告)日:2018-11-27
申请号:CN201810652664.4
申请日:2018-06-22
Applicant: 大连海事大学
IPC: G06T5/00
Abstract: 本发明公开了一种基于深度学习的移动设备图像去雾方法,包括以下步骤:获取实时采集的有雾图像;有雾图像输入区域检测网络,逐区域地提取有雾图像特征并输出有雾图像相关的特征图;特征图传入非线性回归网络层,获得有雾图像每个小区域的媒介透射率,得到透射率矩阵;透射率矩阵传入导向滤波模块,输出精细化透射率矩阵;通过透射率矩阵和有雾图的灰度图来计算大气光;通过透射率矩阵恢复所述采集到的有雾图像获得去雾后的图像。本发明通过具有区域检测功能的深度神经网络模型作为去雾方法的主体模型,在训练网络模型时不需要把图像裁剪成固定大小的图像块,扩大了各层的网络节点的感受野,充分考虑到图像中各个区域间的关系。
-
公开(公告)号:CN111723010B
公开(公告)日:2024-02-23
申请号:CN202010538383.3
申请日:2020-06-12
Applicant: 大连海事大学
IPC: G06F11/36 , G06F18/2431 , G06N3/0499 , G06N3/086
Abstract: 本发明公开了一种基于稀疏代价矩阵的软件BUG分类方法,包括以下步骤:S1:获取软件BUG报告;S2:对软件BUG报告数据进行编码操作,S3:初始化稀疏代价矩阵;S4:使用编码后的数据训练加权极限学习机、使其输出正确的报告分类结果;S5:使用训练好的加权极限学习机求出该加权极限学习机的局部泛化误差;S6:使用差分进化算法中的交叉变异策略产生新的软件BUG稀疏权重矩阵;S7:使用新的稀疏权重矩阵在相同不平衡数据集上训练新的加权极限学习机、S8:直至无法得到更低的局部泛化误差;S9:使用能够得到最低的局部泛化误差的加权极限学习机预测未知的软件BUG报告、得到其相应的报告分类结果。
-
公开(公告)号:CN110413792B
公开(公告)日:2022-10-21
申请号:CN201910728451.X
申请日:2019-08-08
Applicant: 大连海事大学
Abstract: 本发明公开了一种高影响力缺陷报告识别方法,本方法将不平衡学习技术与多类分类方法相结合,解决了错误报告组件分类问题。使用四种不平衡处理策略RUS、ROS、SMOTE和Adacost算法来处理数据并获得平衡的数据集。然后使用基于NBM,KNN和SVM分类器的OVO和OVA多类别分类方法对平衡之后的数据集进行错误报告组件分类。通过探究不平衡学习策略和分类别分类算法的不同组合,找到具有错误报告组件分类最佳性能的变体。通过使用错误组件分类来确定为错误报告分配合适的开发人员,从而更好地解决了错误报告的分类问题。该方法不仅可以减少原始训练集的单词维度,提高训练集的质量,也提高错误报告的分类性能。
-
公开(公告)号:CN111723010A
公开(公告)日:2020-09-29
申请号:CN202010538383.3
申请日:2020-06-12
Applicant: 大连海事大学
IPC: G06F11/36 , G06F16/906 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于稀疏代价矩阵的软件BUG分类方法,包括以下步骤:S1:获取软件BUG报告;S2:对软件BUG报告数据进行编码操作,S3:初始化稀疏代价矩阵;S4:使用编码后的数据训练加权极限学习机、使其输出正确的报告分类结果;S5:使用训练好的加权极限学习机求出该加权极限学习机的局部泛化误差;S6:使用差分进化算法中的交叉变异策略产生新的软件BUG稀疏权重矩阵;S7:使用新的稀疏权重矩阵在相同不平衡数据集上训练新的加权极限学习机、S8:直至无法得到更低的局部泛化误差;S9:使用能够得到最低的局部泛化误差的加权极限学习机预测未知的软件BUG报告、得到其相应的报告分类结果。
-
-
-
-
-
-
-