-
公开(公告)号:CN115063610B
公开(公告)日:2024-03-12
申请号:CN202210596186.6
申请日:2022-05-30
Applicant: 安徽大学
IPC: G06V10/62 , G06T7/62 , G06V10/764 , G06V10/774 , G06T7/11 , G06N5/01 , G06N20/10 , G06N20/20
Abstract: 本发明涉及基于Sentinel‑1、2影像的大豆种植区识别方法及其面积测算方法,与现有技术相比解决了大豆与其他作物光谱相似度高导致其依靠高维特征难以实现种植区识别的缺陷。本发明包括以下步骤:Sentinel‑1、2影像的获取和预处理;时间序列特征提取;支持向量机模型的构建;优选特征子集确定;大豆种植区识别。本发明借助GEE云计算平台,利用线性谐波模型提取大豆生长季内Sentinel‑1、2影像的时间序列特征,然后构造支持向量机模型,同时结合随机森林分类模型及斯皮尔曼相关系数探究大豆识别优选特征子集,最终利用支持向量机模型提取大豆种植区并测算面积。
-
公开(公告)号:CN111462223B
公开(公告)日:2023-05-26
申请号:CN202010321528.4
申请日:2020-04-22
Applicant: 安徽大学
IPC: G06T7/62 , G06N3/0442 , G06N3/0464 , G06N3/084 , G06V10/764
Abstract: 本发明特别涉及一种基于Sentinel‑2影像的江淮地区大豆和玉米种植面积识别方法,包括如下步骤:A、获取Sentinel‑2卫星拍摄的待测区域卫星图像并进行预处理;B、采用JM距离计算土地覆盖类型之间的可分离性,选择最佳分类时相的图像;C、通过分类算法对目标区图像中的像素点进行分类;D、根据被分类为大豆/玉米的像素点数量计算得到大豆/玉米的种植面积。本发明利用具有较高时空分辨率的Sentinel‑2影像数据,结合相关分类算法,可以很好地实现江淮地区大豆和玉米的识别。采用这些步骤,可以在大豆和玉米收获之前,以相对快速和低成本的方式,在种植结构破碎的主产区对大豆和玉米进行识别并制图,获得相对可靠的大豆和玉米的空间分布结果,从而为种植结构复杂和气候多变地区的大豆和玉米种植面积提取提供技术支持。
-
公开(公告)号:CN115063610A
公开(公告)日:2022-09-16
申请号:CN202210596186.6
申请日:2022-05-30
Applicant: 安徽大学
IPC: G06V10/62 , G06T7/62 , G06V10/764 , G06V10/774 , G06T7/11 , G06K9/62 , G06N5/00 , G06N20/10 , G06N20/20
Abstract: 本发明涉及基于Sentinel‑1、2影像的大豆种植区识别方法及其面积测算方法,与现有技术相比解决了大豆与其他作物光谱相似度高导致其依靠高维特征难以实现种植区识别的缺陷。本发明包括以下步骤:Sentinel‑1、2影像的获取和预处理;时间序列特征提取;支持向量机模型的构建;优选特征子集确定;大豆种植区识别。本发明借助GEE云计算平台,利用线性谐波模型提取大豆生长季内Sentinel‑1、2影像的时间序列特征,然后构造支持向量机模型,同时结合随机森林分类模型及斯皮尔曼相关系数探究大豆识别优选特征子集,最终利用支持向量机模型提取大豆种植区并测算面积。
-
公开(公告)号:CN111462223A
公开(公告)日:2020-07-28
申请号:CN202010321528.4
申请日:2020-04-22
Applicant: 安徽大学
Abstract: 本发明特别涉及一种基于Sentinel-2影像的江淮地区大豆和玉米种植面积识别方法,包括如下步骤:A、获取Sentinel-2卫星拍摄的待测区域卫星图像并进行预处理;B、采用JM距离计算土地覆盖类型之间的可分离性,选择最佳分类时相的图像;C、通过分类算法对目标区图像中的像素点进行分类;D、根据被分类为大豆/玉米的像素点数量计算得到大豆/玉米的种植面积。本发明利用具有较高时空分辨率的Sentinel-2影像数据,结合相关分类算法,可以很好地实现江淮地区大豆和玉米的识别。采用这些步骤,可以在大豆和玉米收获之前,以相对快速和低成本的方式,在种植结构破碎的主产区对大豆和玉米进行识别并制图,获得相对可靠的大豆和玉米的空间分布结果,从而为种植结构复杂和气候多变地区的大豆和玉米种植面积提取提供技术支持。
-
-
-